In: Statistics and Probability
1. Using any data sets, run two multiple regression equations. state the dependent and independent variable ( you need to start with at least three and end with at least two) and how you believe they will be related. Run the regression equation until you get to the final model. Then test for the assumptions and interpret the necessary statistics. (use excel Megastat).
Please select from any of the data sets.
Real Estate Data
Price | Bedrooms | Size | Pool | Distance | Twnship | Garage | Baths |
263.1 | 4 | 2300 | 0 | 17 | 5 | 1 | 2 |
182.4 | 4 | 2100 | 1 | 19 | 4 | 0 | 2 |
242.1 | 3 | 2300 | 1 | 12 | 3 | 0 | 2 |
213.6 | 2 | 2200 | 1 | 16 | 2 | 0 | 2.5 |
139.9 | 2 | 2100 | 1 | 28 | 1 | 0 | 1.5 |
245.4 | 2 | 2100 | 0 | 12 | 1 | 1 | 2 |
327.2 | 6 | 2500 | 1 | 15 | 3 | 1 | 2 |
271.8 | 2 | 2100 | 1 | 9 | 2 | 1 | 2.5 |
221.1 | 3 | 2300 | 0 | 18 | 1 | 0 | 1.5 |
266.6 | 4 | 2400 | 1 | 13 | 4 | 1 | 2 |
292.4 | 4 | 2100 | 1 | 14 | 3 | 1 | 2 |
209 | 2 | 1700 | 1 | 8 | 4 | 1 | 1.5 |
270.8 | 6 | 2500 | 1 | 7 | 4 | 1 | 2 |
246.1 | 4 | 2100 | 1 | 18 | 3 | 1 | 2 |
194.4 | 2 | 2300 | 1 | 11 | 3 | 0 | 2 |
281.3 | 3 | 2100 | 1 | 16 | 2 | 1 | 2 |
172.7 | 4 | 2200 | 0 | 16 | 3 | 0 | 2 |
207.5 | 5 | 2300 | 0 | 21 | 4 | 0 | 2.5 |
198.9 | 3 | 2200 | 0 | 10 | 4 | 1 | 2 |
209.3 | 6 | 1900 | 0 | 15 | 4 | 1 | 2 |
252.3 | 4 | 2600 | 1 | 8 | 4 | 1 | 2 |
192.9 | 4 | 1900 | 0 | 14 | 2 | 1 | 2.5 |
209.3 | 5 | 2100 | 1 | 20 | 5 | 0 | 1.5 |
345.3 | 8 | 2600 | 1 | 9 | 4 | 1 | 2 |
326.3 | 6 | 2100 | 1 | 11 | 5 | 1 | 3 |
173.1 | 2 | 2200 | 0 | 21 | 5 | 1 | 1.5 |
187 | 2 | 1900 | 1 | 26 | 4 | 0 | 2 |
257.2 | 2 | 2100 | 1 | 9 | 4 | 1 | 2 |
233 | 3 | 2200 | 1 | 14 | 3 | 1 | 1.5 |
180.4 | 2 | 2000 | 1 | 11 | 5 | 0 | 2 |
234 | 2 | 1700 | 1 | 19 | 3 | 1 | 2 |
207.1 | 2 | 2000 | 1 | 11 | 5 | 1 | 2 |
247.7 | 5 | 2400 | 1 | 16 | 2 | 1 | 2 |
166.2 | 3 | 2000 | 0 | 16 | 2 | 1 | 2 |
177.1 | 2 | 1900 | 1 | 10 | 5 | 1 | 2 |
182.7 | 4 | 2000 | 0 | 14 | 4 | 0 | 2.5 |
216 | 4 | 2300 | 1 | 19 | 2 | 0 | 2 |
312.1 | 6 | 2600 | 1 | 7 | 5 | 1 | 2.5 |
199.8 | 3 | 2100 | 1 | 19 | 3 | 1 | 2 |
273.2 | 5 | 2200 | 1 | 16 | 2 | 1 | 3 |
206 | 3 | 2100 | 0 | 9 | 3 | 0 | 1.5 |
232.2 | 3 | 1900 | 0 | 16 | 1 | 1 | 1.5 |
198.3 | 4 | 2100 | 0 | 19 | 1 | 1 | 1.5 |
205.1 | 3 | 2000 | 0 | 20 | 4 | 0 | 2 |
175.6 | 4 | 2300 | 0 | 24 | 4 | 1 | 2 |
307.8 | 3 | 2400 | 0 | 21 | 2 | 1 | 3 |
269.2 | 5 | 2200 | 1 | 8 | 5 | 1 | 3 |
224.8 | 3 | 2200 | 1 | 17 | 1 | 1 | 2.5 |
171.6 | 3 | 2000 | 0 | 16 | 4 | 0 | 2 |
216.8 | 3 | 2200 | 1 | 15 | 1 | 1 | 2 |
192.6 | 6 | 2200 | 0 | 14 | 1 | 0 | 2 |
236.4 | 5 | 2200 | 1 | 20 | 3 | 1 | 2 |
172.4 | 3 | 2200 | 1 | 23 | 3 | 0 | 2 |
251.4 | 3 | 1900 | 1 | 12 | 2 | 1 | 2 |
246 | 6 | 2300 | 1 | 7 | 3 | 1 | 3 |
147.4 | 6 | 1700 | 0 | 12 | 1 | 0 | 2 |
176 | 4 | 2200 | 1 | 15 | 1 | 1 | 2 |
228.4 | 3 | 2300 | 1 | 17 | 5 | 1 | 1.5 |
166.5 | 3 | 1600 | 0 | 19 | 3 | 0 | 2.5 |
189.4 | 4 | 2200 | 1 | 24 | 1 | 1 | 2 |
312.1 | 7 | 2400 | 1 | 13 | 3 | 1 | 3 |
289.8 | 6 | 2000 | 1 | 21 | 3 | 1 | 3 |
269.9 | 5 | 2200 | 0 | 11 | 4 | 1 | 2.5 |
154.3 | 2 | 2000 | 1 | 13 | 2 | 0 | 2 |
222.1 | 2 | 2100 | 1 | 9 | 5 | 1 | 2 |
209.7 | 5 | 2200 | 0 | 13 | 2 | 1 | 2 |
190.9 | 3 | 2200 | 0 | 18 | 3 | 1 | 2 |
254.3 | 4 | 2500 | 0 | 15 | 3 | 1 | 2 |
207.5 | 3 | 2100 | 0 | 10 | 2 | 0 | 2 |
209.7 | 4 | 2200 | 0 | 19 | 2 | 1 | 2 |
294 | 2 | 2100 | 1 | 13 | 2 | 1 | 2.5 |
176.3 | 2 | 2000 | 0 | 17 | 3 | 0 | 2 |
294.3 | 7 | 2400 | 1 | 8 | 4 | 1 | 2 |
224 | 3 | 1900 | 0 | 6 | 1 | 1 | 2 |
125 | 2 | 1900 | 1 | 18 | 4 | 0 | 1.5 |
236.8 | 4 | 2600 | 0 | 17 | 5 | 1 | 2 |
164.1 | 4 | 2300 | 1 | 19 | 4 | 0 | 2 |
217.8 | 3 | 2500 | 1 | 12 | 3 | 0 | 2 |
192.2 | 2 | 2400 | 1 | 16 | 2 | 0 | 2.5 |
125.9 | 2 | 2400 | 1 | 28 | 1 | 0 | 1.5 |
220.9 | 2 | 2300 | 0 | 12 | 1 | 1 | 2 |
294.5 | 6 | 2700 | 1 | 15 | 3 | 1 | 2 |
244.6 | 2 | 2300 | 1 | 9 | 2 | 1 | 2.5 |
199 | 3 | 2500 | 0 | 18 | 1 | 0 | 1.5 |
240 | 4 | 2600 | 1 | 13 | 4 | 1 | 2 |
263.2 | 4 | 2300 | 1 | 14 | 3 | 1 | 2 |
188.1 | 2 | 1900 | 1 | 8 | 4 | 1 | 1.5 |
243.7 | 6 | 2700 | 1 | 7 | 4 | 1 | 2 |
221.5 | 4 | 2300 | 1 | 18 | 3 | 1 | 2 |
175 | 2 | 2500 | 1 | 11 | 3 | 0 | 2 |
253.2 | 3 | 2300 | 1 | 16 | 2 | 1 | 2 |
155.4 | 4 | 2400 | 0 | 16 | 3 | 0 | 2 |
186.7 | 5 | 2500 | 0 | 21 | 4 | 0 | 2.5 |
179 | 3 | 2400 | 0 | 10 | 4 | 1 | 2 |
188.3 | 6 | 2100 | 0 | 15 | 4 | 1 | 2 |
227.1 | 4 | 2900 | 1 | 8 | 4 | 1 | 2 |
173.6 | 4 | 2100 | 0 | 14 | 2 | 1 | 2.5 |
188.3 | 5 | 2300 | 1 | 20 | 5 | 0 | 1.5 |
310.8 | 8 | 2900 | 1 | 9 | 4 | 1 | 2 |
293.7 | 6 | 2400 | 1 | 11 | 5 | 1 | 3 |
179 | 3 | 2400 | 1 | 8 | 4 | 1 | 2 |
188.3 | 6 | 2100 | 0 | 14 | 2 | 1 | 2.5 |
227.1 | 4 | 2900 | 1 | 20 | 5 | 0 | 1.5 |
173.6 | 4 | 2100 | 1 | 9 | 4 | 1 | 2 |
188.3 | 5 | 2300 | 1 | 11 | 5 | 1 | 3 |
Baseball2012 Data
Team | League | Opened | Age | Seating Capacity | Salary 2012 | Wins | Attendance | BA | ERA | HR | Errors | SB |
San Diego Padres | 0 | 2004 | 10 | 42691 | 55.2 | 76 | 2.12 | 0.247 | 4.01 | 121 | 121 | 155 |
Houston Astros | 0 | 2000 | 14 | 40981 | 60.7 | 55 | 1.61 | 0.236 | 4.56 | 146 | 118 | 105 |
Pittsburgh Pirates | 0 | 2001 | 13 | 38362 | 63.4 | 79 | 2.09 | 0.243 | 3.86 | 170 | 112 | 73 |
Arizona Diamondbacks | 0 | 1998 | 16 | 48633 | 74.3 | 81 | 2.18 | 0.259 | 3.93 | 165 | 90 | 93 |
Colorado Rockies | 0 | 1995 | 19 | 50398 | 78.1 | 64 | 2.63 | 0.274 | 5.22 | 166 | 122 | 100 |
Washington Nationals | 0 | 2008 | 6 | 41487 | 81.3 | 98 | 2.37 | 0.261 | 3.33 | 194 | 94 | 105 |
Cincinnati Reds | 0 | 2003 | 11 | 42319 | 82.2 | 97 | 2.35 | 0.251 | 3.34 | 172 | 89 | 87 |
Atlanta Braves | 0 | 1996 | 18 | 49586 | 83.3 | 94 | 2.42 | 0.247 | 3.42 | 149 | 86 | 101 |
Chicago Cubs | 0 | 1914 | 100 | 41009 | 88.2 | 61 | 2.88 | 0.24 | 4.51 | 137 | 105 | 94 |
New York Mets | 0 | 2009 | 5 | 41922 | 93.4 | 95 | 2.24 | 0.249 | 4.09 | 139 | 101 | 79 |
Los Angeles Dodgers | 0 | 1962 | 52 | 56000 | 95.1 | 86 | 3.32 | 0.252 | 3.34 | 116 | 98 | 104 |
Milwaukee Brewers | 0 | 2001 | 13 | 41900 | 97.7 | 83 | 2.83 | 0.259 | 4.22 | 202 | 99 | 158 |
St. Louis Cardinals | 0 | 2006 | 8 | 43975 | 110.3 | 88 | 3.26 | 0.271 | 3.71 | 159 | 107 | 91 |
San Francisco Giants | 0 | 2000 | 14 | 41915 | 117.6 | 94 | 3.38 | 0.269 | 3.68 | 103 | 115 | 118 |
Miami Marlins | 0 | 2012 | 2 | 36742 | 118.1 | 69 | 2.22 | 0.244 | 4.09 | 137 | 103 | 149 |
Philadelphia Phillies | 0 | 2004 | 10 | 43651 | 174.5 | 81 | 3.57 | 0.255 | 3.83 | 158 | 101 | 116 |
Oakland Athletics | 1 | 1966 | 48 | 35067 | 55.4 | 94 | 1.68 | 0.238 | 3.48 | 195 | 111 | 122 |
Kansas City Royals | 1 | 1973 | 41 | 37903 | 60.9 | 72 | 1.74 | 0.265 | 4.3 | 131 | 113 | 132 |
Tampa Bay Rays | 1 | 1990 | 24 | 34078 | 64.2 | 90 | 1.56 | 0.24 | 3.19 | 175 | 114 | 134 |
Toronto Blue Jays | 1 | 1989 | 25 | 49260 | 75.5 | 73 | 2.1 | 0.245 | 4.64 | 198 | 101 | 123 |
Cleveland Indians | 1 | 1994 | 20 | 43429 | 78.4 | 68 | 1.6 | 0.251 | 4.78 | 136 | 96 | 110 |
Baltimore Orioles | 1 | 1992 | 22 | 45971 | 81.4 | 93 | 2.1 | 0.247 | 3.9 | 214 | 106 | 58 |
Seattle Mariners | 1 | 1999 | 15 | 47860 | 82 | 75 | 1.72 | 0.234 | 3.76 | 149 | 72 | 104 |
Minnesota Twins | 1 | 2010 | 4 | 39504 | 94.1 | 66 | 2.78 | 0.26 | 4.77 | 131 | 107 | 135 |
Chicago White Sox | 1 | 1991 | 23 | 40615 | 96.9 | 85 | 1.97 | 0.255 | 4.02 | 211 | 70 | 109 |
Texas Rangers | 1 | 1994 | 20 | 48194 | 120.5 | 93 | 3.46 | 0.273 | 3.99 | 200 | 85 | 91 |
Detroit Tigers | 1 | 2000 | 14 | 41255 | 132.3 | 88 | 3.03 | 0.268 | 3.75 | 163 | 99 | 59 |
Los Angeles Angels | 1 | 1966 | 48 | 45957 | 154.5 | 89 | 3.06 | 0.274 | 4.02 | 187 | 98 | 134 |
Boston Red Sox | 1 | 1912 | 102 | 37495 | 173.2 | 69 | 3.04 | 0.26 | 4.7 | 165 | 101 | 97 |
New York Yankees | 1 | 2009 | 5 | 50287 | 198 | 74 | 3.54 | 0.265 | 3.85 | 245 | 74 | 93 |
Data Set 3 --Buena School District Bus Data | |||||||||
Bus Number | Maintenance | Maint | Age | Age med | Miles | Type | Type-Dum | Bus-Mfg | Passenger |
982 | 441 | 0 | 1 | 0 | 823 | Diesel | 0 | Bluebird | 55 Passenger |
279 | 390 | 0 | 2 | 0 | 792 | Diesel | 0 | Bluebird | 55 Passenger |
695 | 477 | 1 | 2 | 0 | 802 | Diesel | 0 | Bluebird | 55 Passenger |
686 | 329 | 0 | 3 | 0 | 741 | Diesel | 0 | Bluebird | 55 Passenger |
101 | 424 | 0 | 4 | 0 | 827 | Diesel | 0 | Bluebird | 55 Passenger |
814 | 426 | 0 | 4 | 0 | 757 | Diesel | 0 | Bluebird | 55 Passenger |
554 | 458 | 1 | 4 | 0 | 817 | Diesel | 0 | Bluebird | 14 Passenger |
918 | 390 | 0 | 5 | 0 | 799 | Diesel | 0 | Bluebird | 55 Passenger |
725 | 392 | 0 | 5 | 0 | 774 | Diesel | 0 | Bluebird | 55 Passenger |
731 | 432 | 0 | 6 | 0 | 819 | Diesel | 0 | Bluebird | 42 Passenger |
321 | 450 | 0 | 6 | 0 | 856 | Diesel | 0 | Bluebird | 6 Passenger |
358 | 461 | 1 | 6 | 0 | 849 | Diesel | 0 | Bluebird | 55 Passenger |
75 | 478 | 1 | 6 | 0 | 821 | Diesel | 0 | Bluebird | 55 Passenger |
135 | 329 | 0 | 7 | 0 | 853 | Diesel | 0 | Bluebird | 55 Passenger |
507 | 410 | 0 | 7 | 0 | 866 | Diesel | 0 | Bluebird | 55 Passenger |
714 | 433 | 0 | 7 | 0 | 817 | Diesel | 0 | Bluebird | 42 Passenger |
57 | 455 | 0 | 7 | 0 | 828 | Diesel | 0 | Bluebird | 55 Passenger |
768 | 494 | 1 | 7 | 1 | 815 | Diesel | 0 | Bluebird | 42 Passenger |
977 | 501 | 1 | 7 | 1 | 874 | Diesel | 0 | Bluebird | 55 Passenger |
887 | 357 | 0 | 8 | 1 | 760 | Diesel | 0 | Bluebird | 6 Passenger |
984 | 392 | 0 | 8 | 1 | 851 | Diesel | 0 | Bluebird | 55 Passenger |
692 | 469 | 1 | 8 | 1 | 812 | Diesel | 0 | Bluebird | 55 Passenger |
704 | 503 | 1 | 8 | 1 | 857 | Diesel | 0 | Bluebird | 55 Passenger |
884 | 381 | 0 | 9 | 1 | 882 | Diesel | 0 | Bluebird | 55 Passenger |
326 | 433 | 0 | 9 | 1 | 848 | Diesel | 0 | Bluebird | 55 Passenger |
875 | 489 | 1 | 9 | 1 | 858 | Diesel | 0 | Bluebird | 55 Passenger |
418 | 504 | 1 | 9 | 1 | 842 | Diesel | 0 | Bluebird | 55 Passenger |
953 | 423 | 0 | 10 | 1 | 835 | Diesel | 0 | Bluebird | 55 Passenger |
954 | 476 | 1 | 10 | 1 | 827 | Diesel | 0 | Bluebird | 42 Passenger |
520 | 492 | 1 | 10 | 1 | 836 | Diesel | 0 | Bluebird | 55 Passenger |
600 | 493 | 1 | 10 | 1 | 1008 | Diesel | 0 | Bluebird | 55 Passenger |
200 | 505 | 1 | 10 | 1 | 822 | Diesel | 0 | Bluebird | 55 Passenger |
883 | 436 | 0 | 2 | 0 | 785 | Gasoline | 1 | Bluebird | 55 Passenger |
464 | 355 | 0 | 3 | 0 | 806 | Gasoline | 1 | Bluebird | 55 Passenger |
540 | 529 | 1 | 4 | 0 | 846 | Gasoline | 1 | Bluebird | 55 Passenger |
500 | 369 | 0 | 5 | 0 | 842 | Gasoline | 1 | Bluebird | 55 Passenger |
660 | 337 | 0 | 6 | 0 | 819 | Gasoline | 1 | Bluebird | 55 Passenger |
29 | 396 | 0 | 6 | 0 | 784 | Gasoline | 1 | Bluebird | 55 Passenger |
39 | 411 | 0 | 6 | 0 | 804 | Gasoline | 1 | Bluebird | 55 Passenger |
387 | 422 | 0 | 8 | 1 | 869 | Gasoline | 1 | Bluebird | 55 Passenger |
43 | 439 | 0 | 9 | 1 | 832 | Gasoline | 1 | Bluebird | 55 Passenger |
699 | 475 | 1 | 9 | 1 | 816 | Gasoline | 1 | Bluebird | 55 Passenger |
40 | 466 | 1 | 10 | 1 | 865 | Gasoline | 1 | Bluebird | 55 Passenger |
861 | 474 | 1 | 10 | 1 | 845 | Gasoline | 1 | Bluebird | 55 Passenger |
490 | 497 | 1 | 10 | 1 | 859 | Gasoline | 1 | Bluebird | 55 Passenger |
122 | 558 | 1 | 10 | 1 | 885 | Gasoline | 1 | Bluebird | 55 Passenger |
482 | 514 | 1 | 11 | 1 | 980 | Gasoline | 1 | Bluebird | 55 Passenger |
751 | 444 | 0 | 2 | 0 | 757 | Diesel | 0 | Keiser | 14 Passenger |
705 | 403 | 0 | 4 | 0 | 806 | Diesel | 0 | Keiser | 42 Passenger |
603 | 468 | 1 | 4 | 0 | 800 | Diesel | 0 | Keiser | 14 Passenger |
365 | 462 | 1 | 6 | 0 | 799 | Diesel | 0 | Keiser | 55 Passenger |
45 | 478 | 1 | 6 | 0 | 830 | Diesel | 0 | Keiser | 55 Passenger |
767 | 493 | 1 | 6 | 0 | 816 | Diesel | 0 | Keiser | 55 Passenger |
678 | 428 | 0 | 7 | 0 | 842 | Diesel | 0 | Keiser | 55 Passenger |
724 | 448 | 0 | 8 | 1 | 790 | Diesel | 0 | Keiser | 42 Passenger |
759 | 546 | 1 | 8 | 1 | 870 | Diesel | 0 | Keiser | 55 Passenger |
989 | 380 | 0 | 9 | 1 | 803 | Diesel | 0 | Keiser | 55 Passenger |
61 | 442 | 0 | 9 | 1 | 809 | Diesel | 0 | Keiser | 55 Passenger |
948 | 452 | 0 | 9 | 1 | 831 | Diesel | 0 | Keiser | 42 Passenger |
732 | 471 | 1 | 9 | 1 | 815 | Diesel | 0 | Keiser | 42 Passenger |
120 | 503 | 1 | 10 | 1 | 883 | Diesel | 0 | Keiser | 42 Passenger |
754 | 515 | 1 | 14 | 1 | 895 | Diesel | 0 | Keiser | 14 Passenger |
481 | 382 | 0 | 3 | 0 | 818 | Gasoline | 1 | Keiser | 6 Passenger |
162 | 406 | 0 | 3 | 0 | 798 | Gasoline | 1 | Keiser | 55 Passenger |
9 | 414 | 0 | 4 | 0 | 864 | Gasoline | 1 | Keiser | 55 Passenger |
353 | 449 | 0 | 4 | 0 | 817 | Gasoline | 1 | Keiser | 55 Passenger |
10 | 427 | 0 | 5 | 0 | 780 | Gasoline | 1 | Keiser | 14 Passenger |
38 | 432 | 0 | 6 | 0 | 837 | Gasoline | 1 | Keiser | 14 Passenger |
427 | 359 | 0 | 7 | 0 | 751 | Gasoline | 1 | Keiser | 55 Passenger |
370 | 459 | 1 | 8 | 1 | 826 | Gasoline | 1 | Keiser | 55 Passenger |
693 | 469 | 1 | 9 | 1 | 775 | Gasoline | 1 | Keiser | 55 Passenger |
880 | 474 | 1 | 9 | 1 | 857 | Gasoline | 1 | Keiser | 55 Passenger |
396 | 457 | 1 | 2 | 0 | 815 | Diesel | 0 | Thompson | 55 Passenger |
833 | 496 | 1 | 8 | 1 | 839 | Diesel | 0 | Thompson | 55 Passenger |
398 | 570 | 1 | 9 | 1 | 844 | Diesel | 0 | Thompson | 14 Passenger |
314 | 459 | 1 | 11 | 1 | 859 | Diesel | 0 | Thompson | 6 Passenger |
193 | 540 | 1 | 11 | 1 | 847 | Diesel | 0 | Thompson | 55 Passenger |
156 | 561 | 1 | 12 | 1 | 838 | Diesel | 0 | Thompson | 55 Passenger |
168 | 467 | 1 | 7 | 0 | 827 | Gasoline | 1 | Thompson | 55 Passenger |
671 | 504 | 1 | 8 | 1 | 866 | Gasoline | 1 | Thompson | 55 Passenger |
Banking Chicago Data
Balance | ATM | Services | Debit | Interest | City |
748 | 9 | 2 | 1 | 0 | 1 |
1501 | 10 | 1 | 0 | 0 | 1 |
740 | 6 | 3 | 0 | 0 | 3 |
1593 | 10 | 8 | 1 | 0 | 1 |
1169 | 6 | 4 | 0 | 0 | 4 |
2125 | 18 | 6 | 0 | 0 | 2 |
1554 | 12 | 6 | 1 | 0 | 3 |
1474 | 12 | 7 | 1 | 0 | 1 |
1913 | 6 | 5 | 0 | 0 | 1 |
1218 | 10 | 3 | 1 | 0 | 1 |
1006 | 12 | 4 | 0 | 0 | 1 |
2215 | 20 | 3 | 1 | 0 | 4 |
137 | 7 | 2 | 0 | 0 | 3 |
167 | 5 | 4 | 0 | 0 | 4 |
343 | 7 | 2 | 0 | 0 | 1 |
2557 | 20 | 7 | 1 | 0 | 4 |
2276 | 15 | 4 | 1 | 0 | 3 |
2144 | 17 | 3 | 0 | 0 | 3 |
1995 | 10 | 7 | 0 | 0 | 2 |
1053 | 8 | 4 | 1 | 0 | 3 |
1120 | 8 | 6 | 1 | 0 | 3 |
1746 | 11 | 2 | 0 | 0 | 2 |
1958 | 6 | 2 | 1 | 0 | 2 |
634 | 2 | 7 | 1 | 0 | 4 |
580 | 4 | 1 | 0 | 0 | 1 |
1320 | 4 | 5 | 1 | 0 | 1 |
1675 | 6 | 7 | 1 | 0 | 2 |
789 | 8 | 4 | 0 | 0 | 4 |
1784 | 11 | 5 | 0 | 0 | 1 |
1326 | 16 | 8 | 0 | 0 | 3 |
2051 | 14 | 4 | 1 | 0 | 4 |
1044 | 7 | 5 | 1 | 0 | 1 |
765 | 4 | 3 | 0 | 0 | 4 |
32 | 2 | 0 | 0 | 0 | 3 |
1266 | 11 | 7 | 0 | 0 | 4 |
2204 | 14 | 5 | 0 | 0 | 2 |
2409 | 16 | 8 | 0 | 0 | 2 |
1338 | 14 | 4 | 1 | 0 | 2 |
2076 | 12 | 5 | 1 | 0 | 2 |
1708 | 13 | 3 | 1 | 0 | 1 |
2375 | 12 | 4 | 0 | 0 | 2 |
1487 | 8 | 4 | 1 | 0 | 4 |
1125 | 6 | 4 | 1 | 0 | 2 |
2156 | 14 | 5 | 1 | 0 | 2 |
1756 | 13 | 4 | 0 | 1 | 2 |
1831 | 10 | 4 | 0 | 1 | 3 |
1622 | 14 | 6 | 0 | 1 | 4 |
1886 | 17 | 3 | 0 | 1 | 1 |
1494 | 11 | 2 | 0 | 1 | 1 |
1526 | 8 | 4 | 0 | 1 | 2 |
1838 | 7 | 5 | 1 | 1 | 3 |
1616 | 10 | 4 | 1 | 1 | 2 |
1735 | 12 | 7 | 0 | 1 | 3 |
1885 | 10 | 6 | 1 | 1 | 2 |
1790 | 11 | 4 | 0 | 1 | 3 |
1645 | 6 | 9 | 0 | 1 | 4 |
890 | 7 | 1 | 0 | 1 | 1 |
2138 | 18 | 5 | 0 | 1 | 4 |
1455 | 9 | 5 | 1 | 1 | 3 |
1989 | 12 | 3 | 0 | 1 | 2 |
International Data
x1 | x2 | x3 | x4 | x5 | x6 | x7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 |
Country | Area (KM) | G-20 | Petroleum | Pop (1000's) | 65 & over | Life Expectancy | Literacy % | GDP/cap | Labor force | Unemployment | Exports | Imports | Cell phones |
Algeria | 2,381,740 | 0 | 2 | 31,736 | 4.07 | 69.95 | 61.6 | 5.5 | 9.1 | 30 | 19.6 | 9.2 | 0.034 |
Argentina | 2,766,890 | 1 | 1 | 37,385 | 10.42 | 75.26 | 96.2 | 12.9 | 15 | 15 | 26.5 | 25.2 | 3 |
Australia | 7,686,850 | 1 | 1 | 19,357 | 12.5 | 79.87 | 100 | 23.2 | 9.5 | 6.4 | 69 | 77 | 6.4 |
Austria | 83,858 | 0 | 0 | 8,150 | 15.38 | 77.84 | 98 | 25 | 3.7 | 5.4 | 63.2 | 65.6 | 4.5 |
Belgium | 30,510 | 0 | 0 | 10,259 | 16.95 | 77.96 | 98 | 25.3 | 4.34 | 8.4 | 181.4 | 166 | 1 |
Brazil | 8,511,965 | 1 | 1 | 174,469 | 5.45 | 63.24 | 83.3 | 6.5 | 79 | 7.1 | 55.1 | 55.8 | 4.4 |
Canada | 9,976,140 | 1 | 1 | 31,592 | 12.77 | 79.56 | 97 | 24.8 | 16.1 | 6.8 | 272.3 | 238.2 | 4.2 |
China | 9,596,960 | 1 | 1 | 1,273,111 | 7.11 | 71.62 | 81.5 | 3.6 | 700 | 10 | 232 | 197 | 65 |
Czech Republic | 79 | 0 | 0 | 10,264 | 13.92 | 74.73 | 99.9 | 12.9 | 5.2 | 8.7 | 28.3 | 31.4 | 4.3 |
Denmark | 43,094 | 0 | 1 | 5,352 | 14.85 | 76.72 | 100 | 25.5 | 2.9 | 5.3 | 50.8 | 43.6 | 1.4 |
Finland | 337,030 | 0 | 0 | 5,175 | 15.03 | 77.58 | 100 | 22.9 | 2.6 | 9.8 | 44.4 | 32.7 | 2.2 |
France | 547,030 | 1 | 0 | 59,551 | 16.13 | 78.9 | 99 | 24.4 | 25 | 9.7 | 325 | 320 | 11.1 |
Germany | 357,021 | 1 | 0 | 83,029 | 16.61 | 77.61 | 99 | 23.4 | 40.5 | 9.9 | 578 | 505 | 15.3 |
Greece | 131,940 | 0 | 1 | 10,623 | 17.72 | 78.59 | 95 | 17.2 | 4.32 | 11.3 | 15.8 | 33.9 | 0.937 |
Hungary | 93,030 | 0 | 0 | 10,106 | 14.71 | 71.63 | 99 | 11.2 | 4.2 | 9.4 | 25.2 | 27.6 | 1.3 |
Iceland | 103,000 | 0 | 0 | 278 | 11.81 | 79.52 | 100 | 24.8 | 0.16 | 2.7 | 2 | 2.2 | 0.066 |
India | 3,287,590 | 1 | 1 | 1,029,991 | 4.68 | 62.68 | 52 | 2.2 | * | * | 43.1 | 60.8 | 2.93 |
Indonesia | 1,919,440 | 1 | 2 | 228,437 | 4.63 | 68.27 | 83.8 | 2.9 | 99 | 17.5 | 64.7 | 40.4 | 1 |
Iran | 1,648,000 | 0 | 2 | 66,129 | 4.65 | 69.95 | 72.1 | 6.3 | 17.3 | 14 | 25 | 15 | 0.265 |
Iraq | 437,072 | 0 | 2 | 23,332 | 3.08 | 66.95 | 58 | 2.5 | 4.4 | * | 21.8 | 13.8 | 0 |
Ireland | 70,280 | 0 | 0 | 3,840 | 11.35 | 76.99 | 98 | 21.6 | 1.82 | 4.1 | 73.5 | 45.7 | 2 |
Italy | 301,230 | 1 | 0 | 57,680 | 18.35 | 79.14 | 98 | 22.1 | 23.4 | 10.4 | 241.1 | 231.4 | 20.5 |
Japan | 377,835 | 1 | 0 | 126,771 | 17.35 | 80.8 | 99 | 24.9 | 67.7 | 4.7 | 450 | 355 | 63.9 |
Kuwait | 17,820 | 0 | 2 | 2,041 | 2.42 | 76.27 | 78.6 | 15 | 1.3 | 1.8 | 23.2 | 7.6 | 0.21 |
Libya | 1,759,540 | 0 | 2 | 5,240 | 3.95 | 75.65 | 76.2 | 8.9 | 1.5 | 30 | 13.9 | 7.6 | 0 |
Luxembourg | 2,586 | 0 | 0 | 443 | 14.06 | 77.3 | 100 | 36.4 | 0.248 | 2.7 | 7.6 | 10 | 0.215 |
Mexico | 1,972,550 | 1 | 1 | 101,879 | 4.4 | 71.76 | 89.6 | 9.1 | 39.8 | 2.2 | 168 | 176 | 2 |
Netherlands | 41,526 | 0 | 1 | 15,981 | 13.72 | 78.43 | 99 | 24.4 | 7.2 | 2.6 | 210.3 | 201.2 | 4.1 |
New Zealand | 286,680 | 0 | 0 | 3,864 | 11.53 | 77.99 | 99 | 17.7 | 1.88 | 6.3 | 14.6 | 14.3 | 0.6 |
Nigeria | 923,768 | 0 | 2 | 126,635 | 2.82 | 51.07 | 57.1 | 0.95 | 66 | 28 | 22.2 | 10.7 | 0.027 |
Norway | 324,220 | 0 | 1 | 4,503 | 15.1 | 78.79 | 100 | 27.7 | 2.4 | 3 | 59.2 | 35.2 | 2 |
Poland | 312,685 | 0 | 0 | 38,634 | 12.44 | 73.42 | 99 | 8.5 | 17.2 | 12 | 28.4 | 42.7 | 1.8 |
Portugal | 92,391 | 0 | 0 | 10,066 | 15.62 | 75.94 | 87.4 | 15.8 | 5 | 4.3 | 26.1 | 41 | 3 |
Qatar | 11,437 | 0 | 2 | 769 | 2.48 | 72.62 | 79 | 20.3 | 0.233 | * | 9.8 | 3.8 | 0.043 |
Russia | 17,075,200 | 1 | 1 | 145,470 | 12.81 | 67.34 | 98 | 7.7 | 66 | 10.5 | 105.1 | 44.2 | 2.5 |
Saudi Arabia | 1,960,582 | 1 | 2 | 22,757 | 2.68 | 68.09 | 62.8 | 10.5 | 7 | * | 81.2 | 30.1 | 1 |
South Africa | 1,219,912 | 1 | 0 | 43,586 | 4.88 | 48.09 | 81.1 | 8.5 | 17 | 30 | 30.8 | 27.6 | 2 |
South Korea | 98,480 | 1 | 0 | 47,904 | 7.27 | 74.65 | 98 | 16.1 | 22 | 4.1 | 172.6 | 160.5 | 27 |
Spain | 504,782 | 0 | 0 | 40,038 | 17.18 | 78.93 | 97 | 18 | 17 | 14 | 120.5 | 153.9 | 8.4 |
Sweden | 449,964 | 0 | 0 | 8,875 | 17.28 | 79.71 | 99 | 22.2 | 4.4 | 6 | 95.5 | 80 | 3.8 |
Switzerland | 41,290 | 0 | 0 | 7,283 | 15.3 | 79.73 | 99 | 28.6 | 3.9 | 1.9 | 91.3 | 91.6 | 2 |
Turkey | 780,580 | 1 | 0 | 66,494 | 6.13 | 71.24 | 85 | 6.8 | 23 | 5.6 | 26.9 | 55.7 | 12.1 |
United Arab Emirates | 82,880 | 0 | 2 | 2,407 | 2.4 | 74.29 | 79.2 | 22.8 | 1.4 | * | 46 | 34 | 1 |
United Kingdom | 244,820 | 1 | 1 | 59,648 | 15.7 | 77.82 | 99 | 22.8 | 29.2 | 5.5 | 282 | 324 | 13 |
United States | 9,629,091 | 1 | 1 | 278,059 | 12.61 | 77.26 | 97 | 36.2 | 140.9 | 4 | 776 | 1223 | 69 |
Venezuela | 912,050 | 0 | 2 | 23,917 | 4.72 | 73.31 | 91.1 | 6.2 | 9.9 | 14 | 32.8 | 14.7 | 2 |
Variable descriptions
Real Estate Sales data
Variables
X1 = selling price in $000
X2= Number of bedrooms
X3= Size of the home in square feet
X4= Pool (1=yes, 0= no)
X5= Distance from the center of the city in miles
X6= Township
X7= Garage attached (1=yes, 0= no)
X8= Number of bathrooms
105 homes sold
Baseball Data
Variables
X1 = Team
X2= Language (American =1, National =0)
X3= Built (year stadium was built)
X4= Size (stadium capacity)
X5= Salary (total 2012 team salary, $ million)
X6= Wins
X7= Attendance (total for team in millions)
X8= BA (team batting average)
X9= ERA (Team earned run average)
X10= HR (Team home runs)
X11 = Errors (team errors)
X12= SB (team stolen bases)
X13= year
X14= Average player salary ($)
Buena School District Bus Data
Variables
X1 = Bus number
X2= Maintenance cost ($)
X3= (Age)
X4= Miles
X5= Bus type (diesel or gasoline)
X6= Bus Manufacturer (Bluebird, Keiser, Thompson)
X7= Passengers
2. Using any dataset, run an ANOVA test, and interpret the statistically significant Tukey output.
I will be glad if this two questions are answered. My previous question was not answered. Please remember to use MegastatThank you.
1. Using any data sets, run two multiple regression equations. state the dependent and independent variable ( you need to start with at least three and end with at least two) and how you believe they will be related. Run the regression equation until you get to the final model. Then test for the assumptions and interpret the necessary statistics. (use excel Megastat).
Real Estate Data used.
Dependent : Price
Independent: bedrooms, size, pool, distance, township, garage, baths
Model 1
Regression Analysis |
||||||
R² |
0.534 |
|||||
Adjusted R² |
0.500 |
n |
105 |
|||
R |
0.730 |
k |
7 |
|||
Std. Error |
33.311 |
Dep. Var. |
Price |
|||
ANOVA table |
||||||
Source |
SS |
df |
MS |
F |
p-value |
|
Regression |
123,136.4801 |
7 |
17,590.9257 |
15.85 |
1.01E-13 |
|
Residual |
107,631.1090 |
97 |
1,109.5991 |
|||
Total |
230,767.5891 |
104 |
||||
Regression output |
confidence interval |
|||||
variables |
coefficients |
std. error |
t (df=97) |
p-value |
95% lower |
95% upper |
Intercept |
43.1372 |
39.7393 |
1.086 |
.2804 |
-35.7342 |
122.0087 |
Bedrooms |
7.3755 |
2.5900 |
2.848 |
.0054 |
2.2350 |
12.5160 |
Size |
0.0386 |
0.0148 |
2.618 |
.0103 |
0.0093 |
0.0679 |
Pool |
19.1114 |
7.1266 |
2.682 |
.0086 |
4.9672 |
33.2557 |
Distance |
-1.0127 |
0.7414 |
-1.366 |
.1751 |
-2.4841 |
0.4588 |
Twnship |
-1.7390 |
2.6994 |
-0.644 |
.5210 |
-7.0966 |
3.6186 |
Garage |
35.4980 |
7.6758 |
4.625 |
1.16E-05 |
20.2636 |
50.7324 |
Baths |
23.0925 |
9.0583 |
2.549 |
.0124 |
5.1143 |
41.0708 |
In this model bedrooms, size, pool, garage, baths are significant.
distance, township are not significant. For the next model this two are removed.
Model 2
Dependent : Price
Independent: bedrooms, size, pool, garage, baths
Regression Analysis |
||||||
R² |
0.524 |
|||||
Adjusted R² |
0.500 |
n |
105 |
|||
R |
0.724 |
k |
5 |
|||
Std. Error |
33.317 |
Dep. Var. |
Price |
|||
ANOVA table |
||||||
Source |
SS |
df |
MS |
F |
p-value |
|
Regression |
120,877.3239 |
5 |
24,175.4648 |
21.78 |
1.19E-14 |
|
Residual |
109,890.2652 |
99 |
1,110.0027 |
|||
Total |
230,767.5891 |
104 |
||||
Regression output |
confidence interval |
|||||
variables |
coefficients |
std. error |
t (df=99) |
p-value |
95% lower |
95% upper |
Intercept |
17.0125 |
35.2418 |
0.483 |
.6303 |
-52.9150 |
86.9400 |
Bedrooms |
7.1689 |
2.5591 |
2.801 |
.0061 |
2.0910 |
12.2468 |
Size |
0.0392 |
0.0147 |
2.666 |
.0090 |
0.0100 |
0.0683 |
Pool |
19.1105 |
6.9941 |
2.732 |
.0074 |
5.2326 |
32.9883 |
Garage |
38.8472 |
7.2809 |
5.335 |
6.05E-07 |
24.4002 |
53.2942 |
Baths |
24.6236 |
8.9948 |
2.738 |
.0073 |
6.7759 |
42.4712 |
All the 5 independent variables are significant.
This is the final model. 52.4% in price is explained by the model.
The residuals plots show that there is no violation of assumptions.
2. Using any dataset, run an ANOVA test, and interpret the statistically significant Tukey output.
I will be glad if this two questions are answered. My previous question was not answered. Please remember to use MegastatThank you.
Banking Chicago Data used
Variable used = Balance and city
One factor ANOVA |
|||||
Mean |
n |
Std. Dev |
|||
1,281.4 |
16 |
474.32 |
city1 |
||
1,879.6 |
17 |
350.88 |
city2 |
||
1,359.4 |
14 |
683.48 |
city3 |
||
1,423.5 |
13 |
709.22 |
city4 |
||
1,499.9 |
60 |
596.90 |
Total |
||
ANOVA table |
|||||
Source |
SS |
df |
MS |
F |
p-value |
Treatment |
3,568,072.86 |
3 |
1,189,357.619 |
3.82 |
.0147 |
Error |
17,453,360.08 |
56 |
311,667.144 |
||
Total |
21,021,432.93 |
59 |
|||
Post hoc analysis |
|||||
p-values for pairwise t-tests |
|||||
city1 |
city3 |
city4 |
city2 |
||
1,281.4 |
1,359.4 |
1,423.5 |
1,879.6 |
||
city1 |
1,281.4 |
||||
city3 |
1,359.4 |
.7041 |
|||
city4 |
1,423.5 |
.4983 |
.7667 |
||
city2 |
1,879.6 |
.0032 |
.0125 |
.0306 |
|
Tukey simultaneous comparison t-values (d.f. = 56) |
|||||
city1 |
city3 |
city4 |
city2 |
||
1,281.4 |
1,359.4 |
1,423.5 |
1,879.6 |
||
city1 |
1,281.4 |
||||
city3 |
1,359.4 |
0.38 |
|||
city4 |
1,423.5 |
0.68 |
0.30 |
||
city2 |
1,879.6 |
3.08 |
2.58 |
2.22 |
|
critical values for experimentwise error rate: |
|||||
0.05 |
2.65 |
||||
0.01 |
3.26 |
Calculated F=3.82, P=0.0147 which is < 0.05 level of significance. We conclude there is significant difference in that average balances of the 4 citys.
Tukey test shows that city 1 and city 2 are significant. Other pairs of city are not significant.