Question

In: Statistics and Probability

1. Using any data sets, run two multiple regression equations. state the dependent and independent variable...

1. Using any data sets, run two multiple regression equations. state the dependent and independent variable ( you need to start with at least three and end with at least two) and how you believe they will be related. Run the regression equation until you get to the final model. Then test for the assumptions and interpret the necessary statistics. (use excel Megastat).

Please select from any of the data sets.

Real Estate Data

Price Bedrooms Size Pool Distance Twnship Garage Baths
263.1 4 2300 0 17 5 1 2
182.4 4 2100 1 19 4 0 2
242.1 3 2300 1 12 3 0 2
213.6 2 2200 1 16 2 0 2.5
139.9 2 2100 1 28 1 0 1.5
245.4 2 2100 0 12 1 1 2
327.2 6 2500 1 15 3 1 2
271.8 2 2100 1 9 2 1 2.5
221.1 3 2300 0 18 1 0 1.5
266.6 4 2400 1 13 4 1 2
292.4 4 2100 1 14 3 1 2
209 2 1700 1 8 4 1 1.5
270.8 6 2500 1 7 4 1 2
246.1 4 2100 1 18 3 1 2
194.4 2 2300 1 11 3 0 2
281.3 3 2100 1 16 2 1 2
172.7 4 2200 0 16 3 0 2
207.5 5 2300 0 21 4 0 2.5
198.9 3 2200 0 10 4 1 2
209.3 6 1900 0 15 4 1 2
252.3 4 2600 1 8 4 1 2
192.9 4 1900 0 14 2 1 2.5
209.3 5 2100 1 20 5 0 1.5
345.3 8 2600 1 9 4 1 2
326.3 6 2100 1 11 5 1 3
173.1 2 2200 0 21 5 1 1.5
187 2 1900 1 26 4 0 2
257.2 2 2100 1 9 4 1 2
233 3 2200 1 14 3 1 1.5
180.4 2 2000 1 11 5 0 2
234 2 1700 1 19 3 1 2
207.1 2 2000 1 11 5 1 2
247.7 5 2400 1 16 2 1 2
166.2 3 2000 0 16 2 1 2
177.1 2 1900 1 10 5 1 2
182.7 4 2000 0 14 4 0 2.5
216 4 2300 1 19 2 0 2
312.1 6 2600 1 7 5 1 2.5
199.8 3 2100 1 19 3 1 2
273.2 5 2200 1 16 2 1 3
206 3 2100 0 9 3 0 1.5
232.2 3 1900 0 16 1 1 1.5
198.3 4 2100 0 19 1 1 1.5
205.1 3 2000 0 20 4 0 2
175.6 4 2300 0 24 4 1 2
307.8 3 2400 0 21 2 1 3
269.2 5 2200 1 8 5 1 3
224.8 3 2200 1 17 1 1 2.5
171.6 3 2000 0 16 4 0 2
216.8 3 2200 1 15 1 1 2
192.6 6 2200 0 14 1 0 2
236.4 5 2200 1 20 3 1 2
172.4 3 2200 1 23 3 0 2
251.4 3 1900 1 12 2 1 2
246 6 2300 1 7 3 1 3
147.4 6 1700 0 12 1 0 2
176 4 2200 1 15 1 1 2
228.4 3 2300 1 17 5 1 1.5
166.5 3 1600 0 19 3 0 2.5
189.4 4 2200 1 24 1 1 2
312.1 7 2400 1 13 3 1 3
289.8 6 2000 1 21 3 1 3
269.9 5 2200 0 11 4 1 2.5
154.3 2 2000 1 13 2 0 2
222.1 2 2100 1 9 5 1 2
209.7 5 2200 0 13 2 1 2
190.9 3 2200 0 18 3 1 2
254.3 4 2500 0 15 3 1 2
207.5 3 2100 0 10 2 0 2
209.7 4 2200 0 19 2 1 2
294 2 2100 1 13 2 1 2.5
176.3 2 2000 0 17 3 0 2
294.3 7 2400 1 8 4 1 2
224 3 1900 0 6 1 1 2
125 2 1900 1 18 4 0 1.5
236.8 4 2600 0 17 5 1 2
164.1 4 2300 1 19 4 0 2
217.8 3 2500 1 12 3 0 2
192.2 2 2400 1 16 2 0 2.5
125.9 2 2400 1 28 1 0 1.5
220.9 2 2300 0 12 1 1 2
294.5 6 2700 1 15 3 1 2
244.6 2 2300 1 9 2 1 2.5
199 3 2500 0 18 1 0 1.5
240 4 2600 1 13 4 1 2
263.2 4 2300 1 14 3 1 2
188.1 2 1900 1 8 4 1 1.5
243.7 6 2700 1 7 4 1 2
221.5 4 2300 1 18 3 1 2
175 2 2500 1 11 3 0 2
253.2 3 2300 1 16 2 1 2
155.4 4 2400 0 16 3 0 2
186.7 5 2500 0 21 4 0 2.5
179 3 2400 0 10 4 1 2
188.3 6 2100 0 15 4 1 2
227.1 4 2900 1 8 4 1 2
173.6 4 2100 0 14 2 1 2.5
188.3 5 2300 1 20 5 0 1.5
310.8 8 2900 1 9 4 1 2
293.7 6 2400 1 11 5 1 3
179 3 2400 1 8 4 1 2
188.3 6 2100 0 14 2 1 2.5
227.1 4 2900 1 20 5 0 1.5
173.6 4 2100 1 9 4 1 2
188.3 5 2300 1 11 5 1 3

Baseball2012 Data

Team League Opened Age Seating Capacity Salary 2012 Wins Attendance BA ERA HR Errors SB
San Diego Padres 0 2004 10 42691 55.2 76 2.12 0.247 4.01 121 121 155
Houston Astros 0 2000 14 40981 60.7 55 1.61 0.236 4.56 146 118 105
Pittsburgh Pirates 0 2001 13 38362 63.4 79 2.09 0.243 3.86 170 112 73
Arizona Diamondbacks 0 1998 16 48633 74.3 81 2.18 0.259 3.93 165 90 93
Colorado Rockies 0 1995 19 50398 78.1 64 2.63 0.274 5.22 166 122 100
Washington Nationals 0 2008 6 41487 81.3 98 2.37 0.261 3.33 194 94 105
Cincinnati Reds 0 2003 11 42319 82.2 97 2.35 0.251 3.34 172 89 87
Atlanta Braves 0 1996 18 49586 83.3 94 2.42 0.247 3.42 149 86 101
Chicago Cubs 0 1914 100 41009 88.2 61 2.88 0.24 4.51 137 105 94
New York Mets 0 2009 5 41922 93.4 95 2.24 0.249 4.09 139 101 79
Los Angeles Dodgers 0 1962 52 56000 95.1 86 3.32 0.252 3.34 116 98 104
Milwaukee Brewers 0 2001 13 41900 97.7 83 2.83 0.259 4.22 202 99 158
St. Louis Cardinals 0 2006 8 43975 110.3 88 3.26 0.271 3.71 159 107 91
San Francisco Giants 0 2000 14 41915 117.6 94 3.38 0.269 3.68 103 115 118
Miami Marlins 0 2012 2 36742 118.1 69 2.22 0.244 4.09 137 103 149
Philadelphia Phillies 0 2004 10 43651 174.5 81 3.57 0.255 3.83 158 101 116
Oakland Athletics 1 1966 48 35067 55.4 94 1.68 0.238 3.48 195 111 122
Kansas City Royals 1 1973 41 37903 60.9 72 1.74 0.265 4.3 131 113 132
Tampa Bay Rays 1 1990 24 34078 64.2 90 1.56 0.24 3.19 175 114 134
Toronto Blue Jays 1 1989 25 49260 75.5 73 2.1 0.245 4.64 198 101 123
Cleveland Indians 1 1994 20 43429 78.4 68 1.6 0.251 4.78 136 96 110
Baltimore Orioles 1 1992 22 45971 81.4 93 2.1 0.247 3.9 214 106 58
Seattle Mariners 1 1999 15 47860 82 75 1.72 0.234 3.76 149 72 104
Minnesota Twins 1 2010 4 39504 94.1 66 2.78 0.26 4.77 131 107 135
Chicago White Sox 1 1991 23 40615 96.9 85 1.97 0.255 4.02 211 70 109
Texas Rangers 1 1994 20 48194 120.5 93 3.46 0.273 3.99 200 85 91
Detroit Tigers 1 2000 14 41255 132.3 88 3.03 0.268 3.75 163 99 59
Los Angeles Angels 1 1966 48 45957 154.5 89 3.06 0.274 4.02 187 98 134
Boston Red Sox 1 1912 102 37495 173.2 69 3.04 0.26 4.7 165 101 97
New York Yankees 1 2009 5 50287 198 74 3.54 0.265 3.85 245 74 93
Data Set 3 --Buena School District Bus Data
Bus Number Maintenance Maint Age Age med Miles Type Type-Dum Bus-Mfg Passenger
982 441 0 1 0 823 Diesel 0 Bluebird 55 Passenger
279 390 0 2 0 792 Diesel 0 Bluebird 55 Passenger
695 477 1 2 0 802 Diesel 0 Bluebird 55 Passenger
686 329 0 3 0 741 Diesel 0 Bluebird 55 Passenger
101 424 0 4 0 827 Diesel 0 Bluebird 55 Passenger
814 426 0 4 0 757 Diesel 0 Bluebird 55 Passenger
554 458 1 4 0 817 Diesel 0 Bluebird 14 Passenger
918 390 0 5 0 799 Diesel 0 Bluebird 55 Passenger
725 392 0 5 0 774 Diesel 0 Bluebird 55 Passenger
731 432 0 6 0 819 Diesel 0 Bluebird 42 Passenger
321 450 0 6 0 856 Diesel 0 Bluebird 6 Passenger
358 461 1 6 0 849 Diesel 0 Bluebird 55 Passenger
75 478 1 6 0 821 Diesel 0 Bluebird 55 Passenger
135 329 0 7 0 853 Diesel 0 Bluebird 55 Passenger
507 410 0 7 0 866 Diesel 0 Bluebird 55 Passenger
714 433 0 7 0 817 Diesel 0 Bluebird 42 Passenger
57 455 0 7 0 828 Diesel 0 Bluebird 55 Passenger
768 494 1 7 1 815 Diesel 0 Bluebird 42 Passenger
977 501 1 7 1 874 Diesel 0 Bluebird 55 Passenger
887 357 0 8 1 760 Diesel 0 Bluebird 6 Passenger
984 392 0 8 1 851 Diesel 0 Bluebird 55 Passenger
692 469 1 8 1 812 Diesel 0 Bluebird 55 Passenger
704 503 1 8 1 857 Diesel 0 Bluebird 55 Passenger
884 381 0 9 1 882 Diesel 0 Bluebird 55 Passenger
326 433 0 9 1 848 Diesel 0 Bluebird 55 Passenger
875 489 1 9 1 858 Diesel 0 Bluebird 55 Passenger
418 504 1 9 1 842 Diesel 0 Bluebird 55 Passenger
953 423 0 10 1 835 Diesel 0 Bluebird 55 Passenger
954 476 1 10 1 827 Diesel 0 Bluebird 42 Passenger
520 492 1 10 1 836 Diesel 0 Bluebird 55 Passenger
600 493 1 10 1 1008 Diesel 0 Bluebird 55 Passenger
200 505 1 10 1 822 Diesel 0 Bluebird 55 Passenger
883 436 0 2 0 785 Gasoline 1 Bluebird 55 Passenger
464 355 0 3 0 806 Gasoline 1 Bluebird 55 Passenger
540 529 1 4 0 846 Gasoline 1 Bluebird 55 Passenger
500 369 0 5 0 842 Gasoline 1 Bluebird 55 Passenger
660 337 0 6 0 819 Gasoline 1 Bluebird 55 Passenger
29 396 0 6 0 784 Gasoline 1 Bluebird 55 Passenger
39 411 0 6 0 804 Gasoline 1 Bluebird 55 Passenger
387 422 0 8 1 869 Gasoline 1 Bluebird 55 Passenger
43 439 0 9 1 832 Gasoline 1 Bluebird 55 Passenger
699 475 1 9 1 816 Gasoline 1 Bluebird 55 Passenger
40 466 1 10 1 865 Gasoline 1 Bluebird 55 Passenger
861 474 1 10 1 845 Gasoline 1 Bluebird 55 Passenger
490 497 1 10 1 859 Gasoline 1 Bluebird 55 Passenger
122 558 1 10 1 885 Gasoline 1 Bluebird 55 Passenger
482 514 1 11 1 980 Gasoline 1 Bluebird 55 Passenger
751 444 0 2 0 757 Diesel 0 Keiser 14 Passenger
705 403 0 4 0 806 Diesel 0 Keiser 42 Passenger
603 468 1 4 0 800 Diesel 0 Keiser 14 Passenger
365 462 1 6 0 799 Diesel 0 Keiser 55 Passenger
45 478 1 6 0 830 Diesel 0 Keiser 55 Passenger
767 493 1 6 0 816 Diesel 0 Keiser 55 Passenger
678 428 0 7 0 842 Diesel 0 Keiser 55 Passenger
724 448 0 8 1 790 Diesel 0 Keiser 42 Passenger
759 546 1 8 1 870 Diesel 0 Keiser 55 Passenger
989 380 0 9 1 803 Diesel 0 Keiser 55 Passenger
61 442 0 9 1 809 Diesel 0 Keiser 55 Passenger
948 452 0 9 1 831 Diesel 0 Keiser 42 Passenger
732 471 1 9 1 815 Diesel 0 Keiser 42 Passenger
120 503 1 10 1 883 Diesel 0 Keiser 42 Passenger
754 515 1 14 1 895 Diesel 0 Keiser 14 Passenger
481 382 0 3 0 818 Gasoline 1 Keiser 6 Passenger
162 406 0 3 0 798 Gasoline 1 Keiser 55 Passenger
9 414 0 4 0 864 Gasoline 1 Keiser 55 Passenger
353 449 0 4 0 817 Gasoline 1 Keiser 55 Passenger
10 427 0 5 0 780 Gasoline 1 Keiser 14 Passenger
38 432 0 6 0 837 Gasoline 1 Keiser 14 Passenger
427 359 0 7 0 751 Gasoline 1 Keiser 55 Passenger
370 459 1 8 1 826 Gasoline 1 Keiser 55 Passenger
693 469 1 9 1 775 Gasoline 1 Keiser 55 Passenger
880 474 1 9 1 857 Gasoline 1 Keiser 55 Passenger
396 457 1 2 0 815 Diesel 0 Thompson 55 Passenger
833 496 1 8 1 839 Diesel 0 Thompson 55 Passenger
398 570 1 9 1 844 Diesel 0 Thompson 14 Passenger
314 459 1 11 1 859 Diesel 0 Thompson 6 Passenger
193 540 1 11 1 847 Diesel 0 Thompson 55 Passenger
156 561 1 12 1 838 Diesel 0 Thompson 55 Passenger
168 467 1 7 0 827 Gasoline 1 Thompson 55 Passenger
671 504 1 8 1 866 Gasoline 1 Thompson 55 Passenger

Banking Chicago Data

Balance ATM Services Debit Interest City
748 9 2 1 0 1
1501 10 1 0 0 1
740 6 3 0 0 3
1593 10 8 1 0 1
1169 6 4 0 0 4
2125 18 6 0 0 2
1554 12 6 1 0 3
1474 12 7 1 0 1
1913 6 5 0 0 1
1218 10 3 1 0 1
1006 12 4 0 0 1
2215 20 3 1 0 4
137 7 2 0 0 3
167 5 4 0 0 4
343 7 2 0 0 1
2557 20 7 1 0 4
2276 15 4 1 0 3
2144 17 3 0 0 3
1995 10 7 0 0 2
1053 8 4 1 0 3
1120 8 6 1 0 3
1746 11 2 0 0 2
1958 6 2 1 0 2
634 2 7 1 0 4
580 4 1 0 0 1
1320 4 5 1 0 1
1675 6 7 1 0 2
789 8 4 0 0 4
1784 11 5 0 0 1
1326 16 8 0 0 3
2051 14 4 1 0 4
1044 7 5 1 0 1
765 4 3 0 0 4
32 2 0 0 0 3
1266 11 7 0 0 4
2204 14 5 0 0 2
2409 16 8 0 0 2
1338 14 4 1 0 2
2076 12 5 1 0 2
1708 13 3 1 0 1
2375 12 4 0 0 2
1487 8 4 1 0 4
1125 6 4 1 0 2
2156 14 5 1 0 2
1756 13 4 0 1 2
1831 10 4 0 1 3
1622 14 6 0 1 4
1886 17 3 0 1 1
1494 11 2 0 1 1
1526 8 4 0 1 2
1838 7 5 1 1 3
1616 10 4 1 1 2
1735 12 7 0 1 3
1885 10 6 1 1 2
1790 11 4 0 1 3
1645 6 9 0 1 4
890 7 1 0 1 1
2138 18 5 0 1 4
1455 9 5 1 1 3
1989 12 3 0 1 2

International Data

x1 x2 x3 x4 x5 x6 x7 X8 X9 X10 X11 X12 X13 X14
Country Area (KM) G-20 Petroleum Pop (1000's) 65 & over Life Expectancy Literacy % GDP/cap Labor force Unemployment Exports Imports Cell phones
Algeria 2,381,740 0 2 31,736 4.07 69.95 61.6 5.5 9.1 30 19.6 9.2 0.034
Argentina 2,766,890 1 1 37,385 10.42 75.26 96.2 12.9 15 15 26.5 25.2 3
Australia 7,686,850 1 1 19,357 12.5 79.87 100 23.2 9.5 6.4 69 77 6.4
Austria 83,858 0 0 8,150 15.38 77.84 98 25 3.7 5.4 63.2 65.6 4.5
Belgium 30,510 0 0 10,259 16.95 77.96 98 25.3 4.34 8.4 181.4 166 1
Brazil 8,511,965 1 1 174,469 5.45 63.24 83.3 6.5 79 7.1 55.1 55.8 4.4
Canada 9,976,140 1 1 31,592 12.77 79.56 97 24.8 16.1 6.8 272.3 238.2 4.2
China 9,596,960 1 1 1,273,111 7.11 71.62 81.5 3.6 700 10 232 197 65
Czech Republic 79 0 0 10,264 13.92 74.73 99.9 12.9 5.2 8.7 28.3 31.4 4.3
Denmark 43,094 0 1 5,352 14.85 76.72 100 25.5 2.9 5.3 50.8 43.6 1.4
Finland 337,030 0 0 5,175 15.03 77.58 100 22.9 2.6 9.8 44.4 32.7 2.2
France 547,030 1 0 59,551 16.13 78.9 99 24.4 25 9.7 325 320 11.1
Germany 357,021 1 0 83,029 16.61 77.61 99 23.4 40.5 9.9 578 505 15.3
Greece 131,940 0 1 10,623 17.72 78.59 95 17.2 4.32 11.3 15.8 33.9 0.937
Hungary 93,030 0 0 10,106 14.71 71.63 99 11.2 4.2 9.4 25.2 27.6 1.3
Iceland 103,000 0 0 278 11.81 79.52 100 24.8 0.16 2.7 2 2.2 0.066
India 3,287,590 1 1 1,029,991 4.68 62.68 52 2.2 * * 43.1 60.8 2.93
Indonesia 1,919,440 1 2 228,437 4.63 68.27 83.8 2.9 99 17.5 64.7 40.4 1
Iran 1,648,000 0 2 66,129 4.65 69.95 72.1 6.3 17.3 14 25 15 0.265
Iraq 437,072 0 2 23,332 3.08 66.95 58 2.5 4.4 * 21.8 13.8 0
Ireland 70,280 0 0 3,840 11.35 76.99 98 21.6 1.82 4.1 73.5 45.7 2
Italy 301,230 1 0 57,680 18.35 79.14 98 22.1 23.4 10.4 241.1 231.4 20.5
Japan 377,835 1 0 126,771 17.35 80.8 99 24.9 67.7 4.7 450 355 63.9
Kuwait 17,820 0 2 2,041 2.42 76.27 78.6 15 1.3 1.8 23.2 7.6 0.21
Libya 1,759,540 0 2 5,240 3.95 75.65 76.2 8.9 1.5 30 13.9 7.6 0
Luxembourg 2,586 0 0 443 14.06 77.3 100 36.4 0.248 2.7 7.6 10 0.215
Mexico 1,972,550 1 1 101,879 4.4 71.76 89.6 9.1 39.8 2.2 168 176 2
Netherlands 41,526 0 1 15,981 13.72 78.43 99 24.4 7.2 2.6 210.3 201.2 4.1
New Zealand 286,680 0 0 3,864 11.53 77.99 99 17.7 1.88 6.3 14.6 14.3 0.6
Nigeria 923,768 0 2 126,635 2.82 51.07 57.1 0.95 66 28 22.2 10.7 0.027
Norway 324,220 0 1 4,503 15.1 78.79 100 27.7 2.4 3 59.2 35.2 2
Poland 312,685 0 0 38,634 12.44 73.42 99 8.5 17.2 12 28.4 42.7 1.8
Portugal 92,391 0 0 10,066 15.62 75.94 87.4 15.8 5 4.3 26.1 41 3
Qatar 11,437 0 2 769 2.48 72.62 79 20.3 0.233 * 9.8 3.8 0.043
Russia 17,075,200 1 1 145,470 12.81 67.34 98 7.7 66 10.5 105.1 44.2 2.5
Saudi Arabia 1,960,582 1 2 22,757 2.68 68.09 62.8 10.5 7 * 81.2 30.1 1
South Africa 1,219,912 1 0 43,586 4.88 48.09 81.1 8.5 17 30 30.8 27.6 2
South Korea 98,480 1 0 47,904 7.27 74.65 98 16.1 22 4.1 172.6 160.5 27
Spain 504,782 0 0 40,038 17.18 78.93 97 18 17 14 120.5 153.9 8.4
Sweden 449,964 0 0 8,875 17.28 79.71 99 22.2 4.4 6 95.5 80 3.8
Switzerland 41,290 0 0 7,283 15.3 79.73 99 28.6 3.9 1.9 91.3 91.6 2
Turkey 780,580 1 0 66,494 6.13 71.24 85 6.8 23 5.6 26.9 55.7 12.1
United Arab Emirates 82,880 0 2 2,407 2.4 74.29 79.2 22.8 1.4 * 46 34 1
United Kingdom 244,820 1 1 59,648 15.7 77.82 99 22.8 29.2 5.5 282 324 13
United States 9,629,091 1 1 278,059 12.61 77.26 97 36.2 140.9 4 776 1223 69
Venezuela 912,050 0 2 23,917 4.72 73.31 91.1 6.2 9.9 14 32.8 14.7 2

Variable descriptions

Real Estate Sales data

Variables

X1 = selling price in $000

X2= Number of bedrooms

X3= Size of the home in square feet

X4= Pool (1=yes, 0= no)

X5= Distance from the center of the city in miles

X6= Township

X7= Garage attached (1=yes, 0= no)

X8= Number of bathrooms

105 homes sold

Baseball Data

Variables

X1 = Team

X2= Language (American =1, National =0)

X3= Built (year stadium was built)

X4= Size (stadium capacity)

X5= Salary (total 2012 team salary, $ million)

X6= Wins

X7= Attendance (total for team in millions)

X8= BA (team batting average)

X9= ERA (Team earned run average)

X10= HR (Team home runs)

X11 = Errors (team errors)

X12= SB (team stolen bases)

X13= year

X14= Average player salary ($)

Buena School District Bus Data

Variables

X1 = Bus number

X2= Maintenance cost ($)

X3= (Age)

X4= Miles

X5= Bus type (diesel or gasoline)

X6= Bus Manufacturer (Bluebird, Keiser, Thompson)

X7= Passengers

2. Using any dataset, run an ANOVA test, and interpret the statistically significant Tukey output.

I will be glad if this two questions are answered. My previous question was not answered. Please remember to use MegastatThank you.

Solutions

Expert Solution

1. Using any data sets, run two multiple regression equations. state the dependent and independent variable ( you need to start with at least three and end with at least two) and how you believe they will be related. Run the regression equation until you get to the final model. Then test for the assumptions and interpret the necessary statistics. (use excel Megastat).

Real Estate Data used.

Dependent : Price

Independent: bedrooms, size, pool, distance, township, garage, baths

Model 1

Regression Analysis

0.534

Adjusted R²

0.500

n

105

R

0.730

k

7

Std. Error

33.311

Dep. Var.

Price

ANOVA table

Source

SS

df

MS

F

p-value

Regression

123,136.4801

7  

17,590.9257

15.85

1.01E-13

Residual

107,631.1090

97  

1,109.5991

Total

230,767.5891

104  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=97)

p-value

95% lower

95% upper

Intercept

43.1372

39.7393

1.086

.2804

-35.7342

122.0087

Bedrooms

7.3755

2.5900

2.848

.0054

2.2350

12.5160

Size

0.0386

0.0148

2.618

.0103

0.0093

0.0679

Pool

19.1114

7.1266

2.682

.0086

4.9672

33.2557

Distance

-1.0127

0.7414

-1.366

.1751

-2.4841

0.4588

Twnship

-1.7390

2.6994

-0.644

.5210

-7.0966

3.6186

Garage

35.4980

7.6758

4.625

1.16E-05

20.2636

50.7324

Baths

23.0925

9.0583

2.549

.0124

5.1143

41.0708

In this model bedrooms, size, pool, garage, baths are significant.

distance, township are not significant. For the next model this two are removed.

Model 2

Dependent : Price

Independent: bedrooms, size, pool, garage, baths

Regression Analysis

0.524

Adjusted R²

0.500

n

105

R

0.724

k

5

Std. Error

33.317

Dep. Var.

Price

ANOVA table

Source

SS

df

MS

F

p-value

Regression

120,877.3239

5  

24,175.4648

21.78

1.19E-14

Residual

109,890.2652

99  

1,110.0027

Total

230,767.5891

104  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=99)

p-value

95% lower

95% upper

Intercept

17.0125

35.2418

0.483

.6303

-52.9150

86.9400

Bedrooms

7.1689

2.5591

2.801

.0061

2.0910

12.2468

Size

0.0392

0.0147

2.666

.0090

0.0100

0.0683

Pool

19.1105

6.9941

2.732

.0074

5.2326

32.9883

Garage

38.8472

7.2809

5.335

6.05E-07

24.4002

53.2942

Baths

24.6236

8.9948

2.738

.0073

6.7759

42.4712

All the 5 independent variables are significant.

This is the final model. 52.4% in price is explained by the model.

The residuals plots show that there is no violation of assumptions.

2. Using any dataset, run an ANOVA test, and interpret the statistically significant Tukey output.

I will be glad if this two questions are answered. My previous question was not answered. Please remember to use MegastatThank you.

Banking Chicago Data used

Variable used = Balance and city

One factor ANOVA

Mean

n

Std. Dev

1,281.4

16

474.32

city1

1,879.6

17

350.88

city2

1,359.4

14

683.48

city3

1,423.5

13

709.22

city4

1,499.9

60

596.90

Total

ANOVA table

Source

SS

   df

MS

F

   p-value

Treatment

3,568,072.86

3

1,189,357.619

3.82

.0147

Error

17,453,360.08

56

311,667.144

Total

21,021,432.93

59

Post hoc analysis

p-values for pairwise t-tests

city1

city3

city4

city2

1,281.4

1,359.4

1,423.5

1,879.6

city1

1,281.4

city3

1,359.4

.7041

city4

1,423.5

.4983

.7667

city2

1,879.6

.0032

.0125

.0306

Tukey simultaneous comparison t-values (d.f. = 56)

city1

city3

city4

city2

1,281.4

1,359.4

1,423.5

1,879.6

city1

1,281.4

city3

1,359.4

0.38

city4

1,423.5

0.68

0.30

city2

1,879.6

3.08

2.58

2.22

               critical values for experimentwise error rate:

0.05

2.65

0.01

3.26

Calculated F=3.82, P=0.0147 which is < 0.05 level of significance. We conclude there is significant difference in that average balances of the 4 citys.

Tukey test shows that city 1 and city 2 are significant. Other pairs of city are not significant.


Related Solutions

REGRESSION - USING CALCULATOR 1- You are given data for Xi (independent variable) and Yi (dependent...
REGRESSION - USING CALCULATOR 1- You are given data for Xi (independent variable) and Yi (dependent variable). 2- Calculate the correlation coefficient, r: 3- Calculate the coefficient of determination: 4- Calculate the regression coefficient b1 (the slope): 5- Calculate the regression coefficient b0 (the Y-intercept, or constant): 6- The regression equation (a straight line) is: Problem 2: A researcher is interested in determining whether there is a relationship between shelf space and number of books sold for her bookstore. Shelf...
create a multiple regression using your dependent variable and as many independent variables you can think...
create a multiple regression using your dependent variable and as many independent variables you can think of. discuss the statistical significance of each of your independent variables
a. If they are going to run a linear regression, identify which variable should be the independent variable and which should be the dependent variable in a regression equation.
In seeking to determine how influential advertising is, the management of a recently established retail chain collected data on sales revenue and advertising expenditure from its' stores over the last ten (10) weeks. The table below shows the data collected: Advertising Expenditure ($ 000) Sales ($ 000) 3 5 76 50 250 700 450 3.5 75 4 150 4.5 7 200 750 7.5 800 8.5 1,100 a. If they are going to run a linear regression, identify which variable should...
Fit a multiple regression model using MPG as the dependent variable and DISP, HP, and WT...
Fit a multiple regression model using MPG as the dependent variable and DISP, HP, and WT as the independent variables. Is the overall regression model significant? Test at the α = 0.05 level of significance. State the null hypothesis, the alternative hypothesis =, the test statistic calculated and critical values and your test conclusion. mpg disp hp wt 21 160 110 2.62 21 160 110 2.875 22.8 108 93 2.32 21.4 258 110 3.215 18.7 360 175 3.44 18.1 225...
Develop estimated regression equations, first using annual income as the independent variable and then using household...
Develop estimated regression equations, first using annual income as the independent variable and then using household size as the independent variable. Which variable is the better predictor of annual credit card charges? Discuss your findings - Income ($1000s) Household Size Amount Charged ($) 54 3 4,016 30 2 3,159 32 4 5,100 50 5 4,742 31 2 1,864 55 2 4,070 37 1 2,731 40 2 3,348 66 4 4,764 51 3 4,110 25 3 4,208 48 4 4,219 27...
Develop estimated regression equations, first using annual income as the independent variable and then using household...
Develop estimated regression equations, first using annual income as the independent variable and then using household size as the independent variable. Which variable is the better predictor of annual credit card charges? Discuss your findings - Income ($1000s) Household Size Amount Charged ($) 54 3 4,016 30 2 3,159 32 4 5,100 50 5 4,742 31 2 1,864 55 2 4,070 37 1 2,731 40 2 3,348 66 4 4,764 51 3 4,110 25 3 4,208 48 4 4,219 27...
Your experience tells you that an independent variable is positively correlated to the dependent variable but a multiple regression model give it a negative coefficient.
Your experience tells you that an independent variable is positively correlated to the dependent variable but a multiple regression model give it a negative coefficient. What could cause this? Your judgement is wrong. Statistics don't lie The software package made an error The homoscedasticity assumption has been violated The model may have correlated independent variables The heteroscedasticity assumption has been violated
Given the research questions below, state the independent and dependent variables (or Variable 1 and Variable...
Given the research questions below, state the independent and dependent variables (or Variable 1 and Variable 2) and level of measurement. Write null and research/alternative hypotheses. Then conduct the appropriate statistical analysis. State tests used, report and interpret key statistics, and explain your findings, including the likelihood you might be committing Type I or II errors given your decision regarding the null hypothesis. Research question is, How and how well age of patients predict how long they take to cure...
Given here are the data from a dependent variable and two independent variables. The second independent...
Given here are the data from a dependent variable and two independent variables. The second independent variable is an indicator variable with several categories. Hence, this variable is represented by x2, x3, and x4. How many categories are there for this independent variable? Use a computer to perform a multiple regression analysis on this data to predict y from the x values. Discuss the output and pay particular attention to the dummy variables. y x1 x2 x3 x4 11 1.9...
Determine whether each statement is true or false. If the ...In multiple regression, there are several dependent variables and one independent variable.
Determine whether each statement is true or false. If the statement is false, explain why.In multiple regression, there are several dependent variables and one independent variable.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT