In: Math
Listed below are systolic blood pressure measurements (in mm Hg) obtained from the same woman. Find the regression equation, letting the right arm blood pressure be the predictor (x) variable. Find the best predicted systolic blood pressure in the left arm given that the systolic blood pressure in the right arm is
8585
mm Hg. Use a significance level of
0.050.05.
Right Arm |
100 |
99 |
92 |
79 |
80 |
|
---|---|---|---|---|---|---|
Left Arm |
176 |
170 |
145 |
144 |
146 |
n |
alphaαequals=0.05 |
alphaαequals=0.01 |
NOTE: To test
Upper H 0H0: rhoρequals=0 againstUpper H 1H1: rhoρnot equals≠0, rejectUpper H 0H0 if the absolute value of r is greater than the critical value in the table. |
---|---|---|---|
4 |
0.950 |
0.990 |
|
5 |
0.878 |
0.959 |
|
6 |
0.811 |
0.917 |
|
7 |
0.754 |
0.875 |
|
8 |
0.707 |
0.834 |
|
9 |
0.666 |
0.798 |
|
10 |
0.632 |
0.765 |
|
11 |
0.602 |
0.735 |
|
12 |
0.576 |
0.708 |
|
13 |
0.553 |
0.684 |
|
14 |
0.532 |
0.661 |
|
15 |
0.514 |
0.641 |
|
16 |
0.497 |
0.623 |
|
17 |
0.482 |
0.606 |
|
18 |
0.468 |
0.590 |
|
19 |
0.456 |
0.575 |
|
20 |
0.444 |
0.561 |
|
25 |
0.396 |
0.505 |
|
30 |
0.361 |
0.463 |
|
35 |
0.335 |
0.430 |
|
40 |
0.312 |
0.402 |
|
45 |
0.294 |
0.378 |
|
50 |
0.279 |
0.361 |
|
60 |
0.254 |
0.330 |
|
70 |
0.236 |
0.305 |
|
80 |
0.220 |
0.286 |
|
90 |
0.207 |
0.269 |
|
100 |
0.196 |
0.256 |
PrintDone
What is the regression equation?
Solution:
In excel, we use data analysis in data menu and then regression. Right arm as x and left arm as y.
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.8582 | |||||
R Square | 0.7365 | |||||
Adjusted R Square | 0.6487 | |||||
Standard Error | 9.1865 | |||||
Observations | 5 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 707.6256 | 707.6256 | 8.3850 | 0.0627 | |
Residual | 3 | 253.1744 | 84.3915 | |||
Total | 4 | 960.8000 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 37.3823 | 41.2377 | 0.9065 | 0.4315 | -93.8546 | 168.6191 |
X Variable 1 | 1.3202 | 0.4559 | 2.8957 | 0.0627 | -0.1307 | 2.7711 |
The regression equation is Y = 37.3823 + 1.3202X
When X = 85, the predicted systolic blood pressure in the left arm would be
Y = 37.3823 + 1.3202 (85)
Y = 149.60
---------------------------------------------------------------------------------------------------------------------------------------
Null Hypothesis (Ho): = 0
Alternative Hypothesis (Ha): 0
Degrees of freedom, = n - 2 = 5 - 2 = 3
Test Statistics
2.90
Using t-tables, the critical value at df = 3 and a = 0.05/2 = 0.025 is 3.182
Since test statistics lie within the critical values, we fail to reject Ho.
Hence, we can conclude that the correlation coefficient is zero.