In: Statistics and Probability
Listed below are systolic blood pressure measurements (in mm Hg) obtained from the same woman. Find the regression equation, letting the right arm blood pressure be the predictor (x) variable. Find the best predicted systolic blood pressure in the left arm given that the systolic blood pressure in the right arm is 90 mm Hg. Use a significance level of 0.05 .
Right arm: 100, 99, 92, 80, 79
Left arm: 176, 170, 143, 145, 144
a. The regression equation is?
b. Given that the systolic blood pressure in the right arm is 90mm Hg, the best predicted systolic blood pressure in the left arm is _ mm hg
x | y | (x-xbar)^2 | (y-ybar)^2 | (x-xbar)*(y-ybar) | |
100 | 176 | 100 | 416.16 | 204 | |
99 | 170 | 81 | 207.36 | 129.6 | |
92 | 143 | 4 | 158.76 | -25.2 | |
80 | 145 | 100 | 112.36 | 106 | |
79 | 144 | 121 | 134.56 | 127.6 | |
Total | 450 | 778 | 406 | 1029.2 | 542 |
Mean | 90 | 155.6 |
Slope | beta1 | 1.334975 |
Intercept | beta0 | 35.45222 |
a) Regression equation is | y=beta0+beta1*x | ||||||
B.P. of Left Arm (y)=35.45222+1.334975*B.P. of right arm (x) |
b) | B.P. of right arm is 90 so estimated B.P. of left arm is, | 155.6 |
Formula Sheet:
x | y | (x-xbar)^2 | (y-ybar)^2 | (x-xbar)*(y-ybar) | |
100 | 176 | =(B2-$B$8)^2 | =(C2-$C$8)^2 | =(B2-$B$8)*(C2-$C$8) | |
99 | 170 | =(B3-$B$8)^2 | =(C3-$C$8)^2 | =(B3-$B$8)*(C3-$C$8) | |
92 | 143 | =(B4-$B$8)^2 | =(C4-$C$8)^2 | =(B4-$B$8)*(C4-$C$8) | |
80 | 145 | =(B5-$B$8)^2 | =(C5-$C$8)^2 | =(B5-$B$8)*(C5-$C$8) | |
79 | 144 | =(B6-$B$8)^2 | =(C6-$C$8)^2 | =(B6-$B$8)*(C6-$C$8) | |
Total | =SUM(B2:B6) | =SUM(C2:C6) | =SUM(D2:D6) | =SUM(E2:E6) | =SUM(F2:F6) |
Mean | =B7/5 | =C7/5 | |||
Slope | beta1 | =F7/D7 | |||
Intercept | beta0 | =C8-C10*B8 |
a) Regression equation is | y=beta0+beta1*x | ||||||
B.P. of Left Arm (y)=35.45222+1.334975*B.P. of right arm (x) | |||||||
b) | B.P. of right arm is 90 so estimated B.P. of left arm is, | =C11+C10*90 |