Question

In: Electrical Engineering

An accelerometer with a charge sensitivity of 83 pC/g and a capacitance of 1000pF is connected...

An accelerometer with a charge sensitivity of 83 pC/g and a capacitance of 1000pF is connected
to a voltage follower with an input connector capacitance of 15pF (in parallel with the cable
capacitance), a 10,000pF blocking capacitor and a 100M? resistance. A 3m long cable with a
capacitance of 312pF connects the accelerometer and the voltage follower. Determine:
1. the schematic of the instrument.
2. the instrument’s voltage sensitivity in mV/g.
3. the minimum sampling frequency required to sample the data.
4.The gain required in order that the instrument can measure the acceleration from 0.01g to 1g using a 12-bit ±5V A/D converter.

Solutions

Expert Solution


Related Solutions

A capacitance C1 = 7.0x10^-6F is connected in series with a capacitance C2 = 4.0x10^-6 F,...
A capacitance C1 = 7.0x10^-6F is connected in series with a capacitance C2 = 4.0x10^-6 F, and a potential difference of 275 V is applied across the pair. Calculate the equivalent capacitance. Incorrect. Tries 3/5 Previous Tries What is the charge on C1? Tries 0/5 What is the charge on C2? Tries 0/5 What is the potential difference across C1? Tries 0/5 What is the potential difference across C2? Tries 0/5 (c25p72) Repeat for the same two capacitors but with...
A resistor of resistance R and a capacitor of capacitance C are connected in series to...
A resistor of resistance R and a capacitor of capacitance C are connected in series to an EMF of voltage E. A switch is set to the open position and the capacitor is initially uncharged. The switch is then closed. Show that when the capacitor charges that half of the energy drawn from the EMF is dissipated in the resistor and that half of the energy is stored in the capacitor.
A parallel plate air capacitor with a capacitance of C (0.02 F) is connected to a...
A parallel plate air capacitor with a capacitance of C (0.02 F) is connected to a 12V battery and charged. The capacitor is then disconnected from the battery and a dielectric with a dielectric constant of k (3.2) is inserted between the plates. How much energy will be stored in the capacitor after inserting the dielectric (6 points)? please explain step by step
A resistor with 830? is connected to the plates of a charged capacitor with capacitance 4.60?F...
A resistor with 830? is connected to the plates of a charged capacitor with capacitance 4.60?F . Just before the connection is made, the charge on the capacitor is 7.00mC Part A What is the energy initially stored in the capacitor? Part B What is the electrical power dissipated in the resistor just after the connection is made? Part C What is the electrical power dissipated in the resistor at the instant when the energy stored in the capacitor has...
A parallel-plate capacitor with circular plates and a capacitance of 10.3 μF is connected to a...
A parallel-plate capacitor with circular plates and a capacitance of 10.3 μF is connected to a battery which provides a voltage of 11.2 V . What is the charge on each plate? How much charge would be on the plates if their separation were doubled while the capacitor remained connected to the battery? How much charge would be on the plates if the capacitor were connected to the battery after the radius of each plate was doubled without changing their...
1. How is the charge stored on a capacitor related to the capacitance of the capacitor...
1. How is the charge stored on a capacitor related to the capacitance of the capacitor and the potential difference across the capacitor? a. The charge equals the product of the capacitance and the potential difference. b. The charge equals the ratio of the potential difference to the capacitance. c. The charge equals the ratio of the capacitance to the potential difference. 2. Which do we do to find the potential difference of a capacitor? a. integrate the electric field...
The current through a 83 m long wire connected to a battery is 2.7 A. A...
The current through a 83 m long wire connected to a battery is 2.7 A. A section of the wire is cut off and used to build a circuit. When the remaining wire is connected to the same battery as before the current in the wire is 3.9 A. How much wire is left?
11. Write a user oriented MATLAB program that will calculate the capacitance of the capacitor connected...
11. Write a user oriented MATLAB program that will calculate the capacitance of the capacitor connected across the loads to improve the overall power factor to 0.8 lagging,0.9 lagging, unity power factor, 0.8 leading, 0.9 leading. Also MATLAB will calculate total reactive, real power, and the total current at the source for each ste
A coil (resistance Rc), conductor (capacitance C) and a resistor (resistance Rr) are connected in a...
A coil (resistance Rc), conductor (capacitance C) and a resistor (resistance Rr) are connected in a series a circuit with sinusoidal alternating current (amplitude A) power supply. Calculate the theoretical current in the circuit by using Kirchhoff's 2nd law. Use a sinusoidal trial function for the current to solve the differential equation. Prove, that the sinusoidal current's amplitude depends heavily on the frequency.
A capacitor of unknown capacitance C is charged to 130 V and connected across an initially...
A capacitor of unknown capacitance C is charged to 130 V and connected across an initially uncharged 75 uF capacitor. if the final potential difference across the 75 uF capacitor is 47 V what is C? After you find the value of C, you charge this capacitor C to a potential difference V=140 V between its plates. The charging battery is now disconnected and a slab material ( k=7.20 is slipped between the plates. what is the potential energy of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT