Question

In: Physics

A harmonic oscillator is in the ground state when the parameter k DOUBLES without changing the...

A harmonic oscillator is in the ground state when the parameter k DOUBLES without changing the wavefunction.

What's the probability that the oscillator is found in the new ground state?

Solutions

Expert Solution

if you have any doubt related to the answer please let me know in comments. Give a thumbs up if you like the answer.


Related Solutions

For the ground state of the Harmonic Oscillator and 2D Rigid Rotor A. Give the time...
For the ground state of the Harmonic Oscillator and 2D Rigid Rotor A. Give the time dependent wave function B. Determine <x> and <p> for both the Harmonic Oscillator and 2D Rigid Rotor
Consider the asymmetric 1/2 harmonic oscillator. use the Variational Principle to estimate the ground state energy...
Consider the asymmetric 1/2 harmonic oscillator. use the Variational Principle to estimate the ground state energy of this potential. Use as your trial function Axe^bx^2
In the harmonic oscillator problem, the normalized wave functions for the ground and first excited states...
In the harmonic oscillator problem, the normalized wave functions for the ground and first excited states are ψ0 and ψ1. Using these functions, at some point t, a wave function u = Aψ0 + Bψ1 is constructed, where A and B are real numbers. (a) Show that the average value of x in the u state is generally non-zero. (b) What condition A and B must satisfy if we want the function u to be normalized? (c) For which values...
QUANTUM MECHANICS-upper level In the harmonic oscillator problem, the normalized wave functions for the ground and...
QUANTUM MECHANICS-upper level In the harmonic oscillator problem, the normalized wave functions for the ground and first excited states are ψ0 and ψ1. Using these functions, at some point t, a wave function u = Aψ0 + Bψ1 is constructed, where A and B are real numbers. (a) Show that the average value of x in the u state is generally non-zero. (b) What condition A and B must satisfy if we want the function u to be normalized? (c)...
1)Consider a particle that is in the second excited state of the Harmonic oscillator. (Note: for...
1)Consider a particle that is in the second excited state of the Harmonic oscillator. (Note: for this question and the following, you should rely heavily on the raising and lowering operators. Do not do integrals.) (a) What is the expectation value of position for this particle? (b) What is the expectation value of momentum for this particle? (c) What is ∆x for this particle? 2) Consider a harmonic oscillator potential. (a) If the particle is in the state |ψ1> =...
Consider a classical harmonic oscillator of mass m and spring constant k . What is the...
Consider a classical harmonic oscillator of mass m and spring constant k . What is the probability density for finding the particle at position x ? How does this compare to the probability density for the ground state of a quantum mechanical harmonic oscillator
A simple harmonic oscillator consists of a 0.63 kg block attached to a spring (k =...
A simple harmonic oscillator consists of a 0.63 kg block attached to a spring (k = 190 N/m). The block slides on a horizontal frictionless surface about the equilibrium point x = 0 with a total mechanical energy of 6.0 J. (a) What is the amplitude of the oscillation? (b) How many oscillations does the block complete in 12 s? (c) What is the maximum kinetic energy attained by the block? (d) What is the speed of the block at...
For a damped harmonic oscillator m = 200 g k = 45 N/m and b =...
For a damped harmonic oscillator m = 200 g k = 45 N/m and b = 70 g/s. What is the periodic time of the motion in seconds?
A H2 molecule can be approximated by a simple harmonic oscillator having a spring constant k...
A H2 molecule can be approximated by a simple harmonic oscillator having a spring constant k = 1.1 ✕ 103 N/m. (a) How many different energy transitions are possible when the H2 molecule decays from the third excited state down to the ground state? (b) Find the photon energies produced in these transitions and their wavelengths. Enter 0 in any unused boxes. relative energy transition energy wavelengths lowest                       eV              nm middle                      eV              nm highest                      eV...
Find <x^4> , <p^4> , for the nth stationary state of the harmonic oscillator, using the...
Find <x^4> , <p^4> , for the nth stationary state of the harmonic oscillator, using the method of example 2.5. Example 2.5 : Find the expectation value of the potential energy in the nth state of the harmonic oscillator.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT