Question

In: Physics

For a damped harmonic oscillator m = 200 g k = 45 N/m and b =...

For a damped harmonic oscillator m = 200 g k = 45 N/m and b = 70 g/s. What is the periodic time of the motion in seconds?

Solutions

Expert Solution


Related Solutions

1. A damped driven harmonic oscillator with m=12 kg, k=280 N/m, and b=75 kg/sis subjected to...
1. A damped driven harmonic oscillator with m=12 kg, k=280 N/m, and b=75 kg/sis subjected to a driving force given by F(t) = F0cos(ωt), where F0=55 N. a) What value of ω results in steady-state oscillations with maximum amplitude? b) What is the maximum amplitude? c) What is the phase angle? 2. An undamped, driven harmonic oscillator satisfies the equation of motion where the driving force is switched on at t=0. a) Assuming a solution of the form x(t) =...
consider a linearly damped simple harmonic oscillator with mass m,restoring force contsant k and resistive force...
consider a linearly damped simple harmonic oscillator with mass m,restoring force contsant k and resistive force constant c.if c >sqrt(4mk), work out the expression for the displacement as a function of time and describe the predicted time dependence of the motion.
Consider a classical harmonic oscillator of mass m and spring constant k . What is the...
Consider a classical harmonic oscillator of mass m and spring constant k . What is the probability density for finding the particle at position x ? How does this compare to the probability density for the ground state of a quantum mechanical harmonic oscillator
1.For a damped simple harmonic oscillator, the block has a mass of 2.3 kg and the...
1.For a damped simple harmonic oscillator, the block has a mass of 2.3 kg and the spring constant is 6.6 N/m. The damping force is given by -b(dx/dt), where b = 220 g/s. The block is pulled down 12.4 cm and released. (a) Calculate the time required for the amplitude of the resulting oscillations to fall to 1/8 of its initial value. (b) How many oscillations are made by the block in this time? 2.An oscillator consists of a block...
Please provide an example of a damped harmonic oscillator. They are more common than undamped or...
Please provide an example of a damped harmonic oscillator. They are more common than undamped or simple harmonic oscillators. What do you think there is any harmonic motion in the physical world that is not damped harmonic motion? Try to make a list of five examples of undamped harmonic motion and damped harmonic motion. Which list was easier to make? Why are the group of the peoples in general ordered to “route step” (walk out of step) across a bridge?
Derive the Kramers-Kronig relation for a damped harmonic oscillator. The parameters can be chosen randomly.
Derive the Kramers-Kronig relation for a damped harmonic oscillator. The parameters can be chosen randomly.
A damped oscillator is formed by attaching a mass with m = 1.5 kg to one...
A damped oscillator is formed by attaching a mass with m = 1.5 kg to one end of a spring with spring constant k = 8 N/m. The other end of the spring is anchored and the mass can slide on a horizontal surface The damping force is given by –bv with b = 230 g/s. At t=0, the mass is displaced so that the spring is compressed by 12 cm from its unstretched length and released from rest. (a)...
A 200 g mass hangs from a massless spring (k = 10 N/m). At t =...
A 200 g mass hangs from a massless spring (k = 10 N/m). At t = 0.0 s, the mass is 20 cm below the equilibrium point and moving upward with a speed of 100 cm/s. What is the a. oscillation frequency? b. distance from equilibrium when the speed is 50 cm/s? c. distance from equilibrium at t = 1.0 s?
An oscillator consists of a block attached to a spring (k = 490 N/m). At some...
An oscillator consists of a block attached to a spring (k = 490 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.107 m, v = -16.6 m/s, and a = -103 m/s2. Calculate (a) the frequency of oscillation, (b) the mass of the block, and (c) the amplitude of the motion.
A underdamped oscillator with a mass m = 100g, k= 1500N/m and b = 0.017kg/s is...
A underdamped oscillator with a mass m = 100g, k= 1500N/m and b = 0.017kg/s is displaced 4mm from equilibrium. Find the x(t) for this type of motion.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT