Question

In: Physics

A H2 molecule can be approximated by a simple harmonic oscillator having a spring constant k...

A H2 molecule can be approximated by a simple harmonic oscillator having a spring constant k = 1.1 ✕ 103 N/m.

(a) How many different energy transitions are possible when the H2 molecule decays from the third excited state down to the ground state?

(b) Find the photon energies produced in these transitions and their wavelengths. Enter 0 in any unused boxes.

relative energy transition energy wavelengths
lowest                       eV              nm
middle                      eV              nm
highest                      eV               nm

Solutions

Expert Solution

#Hi, if you are happy and find this useful please thumbs up.  in Case, if you have any query regarding the solution please let me know in the comments section below. We can discuss. Thanks!!


Related Solutions

The vibrations of a bi-atomic molecule AB can be approximated as a harmonic oscillator with the...
The vibrations of a bi-atomic molecule AB can be approximated as a harmonic oscillator with the potential energy of type V (x) = (kx^2)/2, x representing the spatial deviation of the relative position between those 2 molecules towards equilibrium. Calculate the vibrational energy of the H2 molecule knowing that k = 510N/m and the mass of a hydrogen atom is m0 = 1.66 ∗ 10−27 kg
Consider a classical harmonic oscillator of mass m and spring constant k . What is the...
Consider a classical harmonic oscillator of mass m and spring constant k . What is the probability density for finding the particle at position x ? How does this compare to the probability density for the ground state of a quantum mechanical harmonic oscillator
A simple harmonic oscillator consists of a 0.63 kg block attached to a spring (k =...
A simple harmonic oscillator consists of a 0.63 kg block attached to a spring (k = 190 N/m). The block slides on a horizontal frictionless surface about the equilibrium point x = 0 with a total mechanical energy of 6.0 J. (a) What is the amplitude of the oscillation? (b) How many oscillations does the block complete in 12 s? (c) What is the maximum kinetic energy attained by the block? (d) What is the speed of the block at...
a) a simple harmonic oscillator consists of a glass bead attached to a spring. it is...
a) a simple harmonic oscillator consists of a glass bead attached to a spring. it is immersed in a liquid where it loses 10% of its energy over 10 periods. compute the coefficient of kinetic friction b assuming spring constant k=1 N/m and mass m=10 grams; b) suppose the spring is now disconnected and the bead starts failing in the liquid, accelerating until it reaches the terminal velocity. compute the terminal velocity.
The displacement as a function of time of a 4.0kg mass spring simple harmonic oscillator is...
The displacement as a function of time of a 4.0kg mass spring simple harmonic oscillator is .   What is the displacement of the mass at 2.2 seconds? ___________m What is the spring constant? ___________________N/m What is the position of the object when the speed is maximum? ______________m What is the magnitude of the maximum velocity?____________________m/s
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring of spring constant 260 N/m. When t = 1.60 s, the position and velocity of the block are x = 0.199 m and v = 3.920 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 3.4 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.4 kg attached to a spring of spring constant 120 N/m. When t = 0.84 s, the position and velocity of the block are x = 0.127 m and v = 3.23 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
Consider the undamped forced harmonic oscillator with mass 1 kg, damping coefficient 0, spring constant 4,...
Consider the undamped forced harmonic oscillator with mass 1 kg, damping coefficient 0, spring constant 4, and external force h(t) = 3cos(t). The mass is initially at rest in the equilibrium position. You must understand that you can model this as: y’’ = -4y +3cost; y(0) = 0; y’(0) = 0. (5pts) Using the method of Laplace transforms, solve this initial value problem. Check your solution solves the IVP. (4pts) Be sure to check that your solution satisfies both the...
(10pts) Consider the damped forced harmonic oscillator with mass 1 kg, damping coefficient 2, spring constant...
(10pts) Consider the damped forced harmonic oscillator with mass 1 kg, damping coefficient 2, spring constant 3, and external force in the form of an instantaneous hammer strike (Section 6.4) at time t = 4 seconds. The mass is initially displaced 2 meters in the positive direction and an initial velocity of 1 m/s is applied. Model this situation with an initial value problem and solve it using the method of Laplace transforms.
consider a linearly damped simple harmonic oscillator with mass m,restoring force contsant k and resistive force...
consider a linearly damped simple harmonic oscillator with mass m,restoring force contsant k and resistive force constant c.if c >sqrt(4mk), work out the expression for the displacement as a function of time and describe the predicted time dependence of the motion.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT