Given function f(x,y,z)=x^(2)+2*y^(2)+z^(2), subject to two
constraints x+y+z=6 and x-2*y+z=0. find the extreme value of
f(x,y,z)...
Given function f(x,y,z)=x^(2)+2*y^(2)+z^(2), subject to two
constraints x+y+z=6 and x-2*y+z=0. find the extreme value of
f(x,y,z) and determine whether it is maximum of minimum.
Find the maximum and minimum values of the function
f(x,y,z)=3x−y−3z subject to the constraints x^2+2z^2=49 and
x+y−z=9. Maximum value is Maximum value is , occuring at
( , , ). Minimum value is , occuring at ( , ,
).
Consider the following function:
f (x , y , z ) = x 2 + y 2 + z 2 − x y − y z + x + z
(a) This function has one critical point. Find it.
(b) Compute the Hessian of f , and use it to determine whether
the critical point is a local man, local min, or neither?
(c) Is the critical point a global max, global min, or neither?
Justify your answer.
4. The joint density function of (X, Y ) is
f(x,y)=2(x+y), 0≤y≤x≤1
. Find the correlation coefficient ρX,Y
.
5. The height of female students in KU follows a normal
distribution with mean 165.3 cm and s.d. 7.3cm. The height of male
students in KU follows a normal distribution with mean 175.2 cm and
s.d. 9.2cm. What is the probability that a random female student is
taller than a male student in KU?
Let f(x, y) be a function such that f(0, 0) = 1, f(0, 1) = 2,
f(1, 0) = 3, f(1, 1) = 5, f(2, 0) = 5, f(2, 1) = 10. Determine the
Lagrange interpolation F(x, y) that interpolates the above data.
Use Lagrangian bi-variate interpolation to solve this and also show
the working steps.