Question

In: Statistics and Probability

4. The joint density function of (X, Y ) is f(x,y)=2(x+y), 0≤y≤x≤1 . Find the correlation...

4. The joint density function of (X, Y ) is f(x,y)=2(x+y), 0≤y≤x≤1

. Find the correlation coefficient ρX,Y .

5. The height of female students in KU follows a normal distribution with mean 165.3 cm and s.d. 7.3cm. The height of male students in KU follows a normal distribution with mean 175.2 cm and s.d. 9.2cm. What is the probability that a random female student is taller than a male student in KU?

Solutions

Expert Solution

4. The correlation (or correlation coefficient) between random variables X and Y , denoted as ρXY , is

where

Covariance (i.e. σXY ) is an expected value of a function of X and Y over the (X, Y ) space, if X and Y are continuous we can write

or

and


Related Solutions

Given the joint probability density function f(x ,y )=k (xy+ 1) for 0<x <1--and--0<y<1 , find...
Given the joint probability density function f(x ,y )=k (xy+ 1) for 0<x <1--and--0<y<1 , find the correlation--ROW p (X,Y) .
Let X and Y have the following joint density function f(x,y)=k(1-y) , 0≤x≤y≤1. Find the value...
Let X and Y have the following joint density function f(x,y)=k(1-y) , 0≤x≤y≤1. Find the value of k that makes this a probability density function. Compute the probability that P(X≤3/4, Y≥1/2). Find E(X). Find E(X|Y=y).
Suppose X and Y have joint probability density function f(x,y) = 6(x-y) when 0<y<x<1 and f(x,y)...
Suppose X and Y have joint probability density function f(x,y) = 6(x-y) when 0<y<x<1 and f(x,y) = 0 otherwise. (a) Indicate with a sketch the sample space in the x-y plane (b) Find the marginal density of X, fX(x) (c) Show that fX(x) is properly normalized, i.e., that it integrates to 1 on the sample space of X (d) Find the marginal density of Y, fY(y) (e) Show that fY(y) is properly normalized, i.e., that it integrates to 1 on...
2) X and Y have the following joint probability density function: n=4, X=2, Y=1, Z=3 Find:...
2) X and Y have the following joint probability density function: n=4, X=2, Y=1, Z=3 Find: a)Marginal distribution of X and Y. b)Mean of X and Y. c)E(XY). d)Covariance of X and Y and comment on it. e)Correlation coefficient between X and Y. And comment. 2) X and Y have the following joint probability density function: {((5y^3)/(96x^2)) 2<x<5, 0<y<4             0      Elsewhere} Find: a) Marginal distribution of X and Y b) Mean of X and Y c) E(XY) d)...
f(x,y)=30(1-y)^2*x*e^(-x/y). x>0. 0<y<1. a). show that f(y) the marginal density function of Y is a Beta...
f(x,y)=30(1-y)^2*x*e^(-x/y). x>0. 0<y<1. a). show that f(y) the marginal density function of Y is a Beta random variable with parameters alfa=3 and Beta=3. b). show that f(x|y) the conditional density function of X given Y=y is a Gamma random variable with parameters alfa=2 and beta=y. c). set up how would you find P(1<X<3|Y=.5). you do not have to do any calculations
Let the joint p.d.f f(x,y) = 1 for 0 <= x <= 2, 0 <= y...
Let the joint p.d.f f(x,y) = 1 for 0 <= x <= 2, 0 <= y <= 1, 2*y <= x. (And 0 otherwise) Let the random variable W = X + Y. Without knowing the p.d.f of W, what interval of w values holds at least 60% of the probability?
Suppose that the joint probability density function of ˜ (X, Y) is given by:´ f X,Y...
Suppose that the joint probability density function of ˜ (X, Y) is given by:´ f X,Y (x,y) = 4x/y3 I(0.1)(x), I (1, ∞)(y). Calculate a) P(1/2 < X < 3/4, 0 < Y ≤ 1/3). b) P(Y > 5). c) P(Y > X).
Suppose that X and Y have the following joint probability density function. f (x, y) =...
Suppose that X and Y have the following joint probability density function. f (x, y) = (3/394)*y, 0 < x < 8, y > 0, x − 3 < y < x + 3 (a)   Find E(XY). (b)   Find the covariance between X and Y.
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1...
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1                            for 0 < x < 1, x < y < x + 1. What is the marginal density of X and Y? Use this to compute Var(X) and Var(Y) Compute the expectation E[XY] Use the previous results to compute the correlation Corr (Y, X) Compute the third moment of Y, i.e., E[Y3]
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1...
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1 for 0 < x < 1, x < y < x + 1. A. What is the marginal density of X and Y ? Use this to compute Var(X) and Var(Y). B. Compute the expectation E[XY] C. Use the previous results to compute the correlation Corr(Y, X). D. Compute the third moment of Y , i.e., E[Y3].
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT