Question

In: Math

Find the maximum and minimum values of the function f(x,y,z)=3x−y−3z subject to the constraints x^2+2z^2=49 and...

Find the maximum and minimum values of the function f(x,y,z)=3x−y−3z subject to the constraints x^2+2z^2=49 and x+y−z=9. Maximum value is Maximum value is  , occuring at ( ,  , ). Minimum value is  , occuring at ( , , ).

Solutions

Expert Solution


Related Solutions

Use Lagrange Multipliers to determine maximum and minimum. f(x,y,z)=(3x^2)+(3y^2)+(3z^2) subject to xyz=2
Use Lagrange Multipliers to determine maximum and minimum. f(x,y,z)=(3x^2)+(3y^2)+(3z^2) subject to xyz=2
Find the maximum and minimum of the function f(x, y, z) = (x^2)(y^2)z in the region...
Find the maximum and minimum of the function f(x, y, z) = (x^2)(y^2)z in the region D = {(x, y, z)|x^2 + 2y^2 + 3z^2 ≤ 1}.
1. a. Find the relative maximum and minimum values of f(x, y) = (3x^2) − (2y^2)...
1. a. Find the relative maximum and minimum values of f(x, y) = (3x^2) − (2y^2) b. Find the relative maximum and minimum values of f(x, y) = (x^3) + (y^3) − 6xy . The expression that you may need D = fxx(x0, y0)fyy(x0, y0) − (fxy(x0, y0))2
Find the maximum and minimum values of f subject to the given constraints. Use a computer...
Find the maximum and minimum values of f subject to the given constraints. Use a computer algebra system to solve the system of equations that arises in using Lagrange multipliers. (If your CAS finds only one solution, you may need to use additional commands. Round your answer to four decimal places.) f(x, y, z) = yex − z;    9x2 + 4y2 + 36z2 = 36,  xy + yz = 1
Given function f(x,y,z)=x^(2)+2*y^(2)+z^(2), subject to two constraints x+y+z=6 and x-2*y+z=0. find the extreme value of f(x,y,z)...
Given function f(x,y,z)=x^(2)+2*y^(2)+z^(2), subject to two constraints x+y+z=6 and x-2*y+z=0. find the extreme value of f(x,y,z) and determine whether it is maximum of minimum.
Find the absolute maximum and minimum values of the function f(x, y) = x^2 + ((4/3)...
Find the absolute maximum and minimum values of the function f(x, y) = x^2 + ((4/3) y^3) − 1 on the disk x^2 + y^2 ≤ 1.
Find the absolute maximum and minimum values for the function f(x, y) = xy on the...
Find the absolute maximum and minimum values for the function f(x, y) = xy on the rectangle R defined by −8 ≤ x ≤ 8, −8 ≤ y ≤ 8.
7. Find the maximum and minimum of the function. f (x, y) = x^ 2 +...
7. Find the maximum and minimum of the function. f (x, y) = x^ 2 + y^ 2 − xy − 3x − 3y on the triangle D ={(x, y)| x ≥ 0, y ≥ 0, x + y ≤ 4}
1. Find the derivative.   f(x) = x6 · 3x 2.  Find the absolute maximum and minimum values...
1. Find the derivative.   f(x) = x6 · 3x 2.  Find the absolute maximum and minimum values on the closed interval [-1,8] for the function below. If a maximum or minimum value does not exist, enter NONE. f(x) = 1 − x2/3 3.  Find the derivative. f(x) = x5 · e6x Consider the following. f(x) = -19ln(84x) Compute f '(x), then find the exact value of f ' (3).
Problem 2 Find the locations and values for the maximum and minimum of f (x, y)...
Problem 2 Find the locations and values for the maximum and minimum of f (x, y) = 3x^3 − 2x^2 + y^2 over the region given by x^2 + y^2 ≤ 1. and then over the region x^2 + 2y^2 ≤ 1. Use the outline: INSIDE Critical points inside the region. BOUNDARY For each part of the boundary you should have: • The function g(x, y) and ∇g • The equation ∇f = λ∇g • The set of three equations...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT