Question

In: Math

Consider the following function: f (x , y , z ) = x 2 + y...

Consider the following function:
f (x , y , z ) = x 2 + y 2 + z 2 − x y − y z + x + z

  1. (a) This function has one critical point. Find it.

  2. (b) Compute the Hessian of f , and use it to determine whether the critical point is a local man, local min, or neither?

  3. (c) Is the critical point a global max, global min, or neither? Justify your answer.

Solutions

Expert Solution


Related Solutions

Given function f(x,y,z)=x^(2)+2*y^(2)+z^(2), subject to two constraints x+y+z=6 and x-2*y+z=0. find the extreme value of f(x,y,z)...
Given function f(x,y,z)=x^(2)+2*y^(2)+z^(2), subject to two constraints x+y+z=6 and x-2*y+z=0. find the extreme value of f(x,y,z) and determine whether it is maximum of minimum.
Find the maximum and minimum of the function f(x, y, z) = (x^2)(y^2)z in the region...
Find the maximum and minimum of the function f(x, y, z) = (x^2)(y^2)z in the region D = {(x, y, z)|x^2 + 2y^2 + 3z^2 ≤ 1}.
Consider the scalar functions f(x,y,z)g(x,y,z)=x^2+y^2+z^2, g(x,y,z)=xy+xz+yz, and=h(x,y,z)=√xyz Which of the three vector fields ∇f∇f, ∇g∇g and...
Consider the scalar functions f(x,y,z)g(x,y,z)=x^2+y^2+z^2, g(x,y,z)=xy+xz+yz, and=h(x,y,z)=√xyz Which of the three vector fields ∇f∇f, ∇g∇g and ∇h∇h are conservative?
Consider a function f(x) which satisfies the following properties: 1. f(x+y)=f(x) * f(y) 2. f(0) does...
Consider a function f(x) which satisfies the following properties: 1. f(x+y)=f(x) * f(y) 2. f(0) does not equal to 0 3. f'(0)=1 Then: a) Show that f(0)=1. (Hint: use the fact that 0+0=0) b) Show that f(x) does not equal to 0 for all x. (Hint: use y= -x with conditions (1) and (2) above.) c) Use the definition of the derivative to show that f'(x)=f(x) for all real numbers x d) let g(x) satisfy properties (1)-(3) above and let...
(6) Consider the function f(x, y) = 9 − x^2 − y^2 restricted to the domain...
(6) Consider the function f(x, y) = 9 − x^2 − y^2 restricted to the domain x^2/9 + y^2 ≤ 1. This function has a single critical point at (0, 0) (a) Using an appropriate parameterization of the boundary of the domain, find the critical points of f(x, y) restricted to the boundary. (b) Using the method of Lagrange Multipliers, find the critical points of f(x, y) restricted to the boundary. (c) Assuming that the critical points you found were...
The joint density function for random variables X, Y, and Z is f(x, y, z)= Cxyz  if...
The joint density function for random variables X, Y, and Z is f(x, y, z)= Cxyz  if 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 2, and f(x, y, z) = 0 otherwise. (a) Find the value of the constant C. (b) Find P(X ≤ 1, Y ≤ 1, Z ≤ 1). (c) Find P(X + Y + Z ≤ 1).
Describe the level surfaces for the 3-variable function: f(x,y,z) = z/(x-y)
Describe the level surfaces for the 3-variable function: f(x,y,z) = z/(x-y)
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just...
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just f (because f is already curried) let f x y z = (x,(y,z)) let f x y z = x (y z)
Consider the function y = f(x) = 2x3 − 3x2 − 9x − 2. (a) [2]...
Consider the function y = f(x) = 2x3 − 3x2 − 9x − 2. (a) [2] Specify the (open) intervals on which f(x) is increasing, and the intervals on which f(x) is decreasing. (b) [2] Specify all local maxima and local minima, giving both x-coordinates and y-coordinates for them. (c) [2] Specify the intervals on which f(x) is concave up and on which f(x) is concave down. (d) [2] List the inflection point(s). (e) [2] Sketch a graph of y...
Please Consider the function f : R -> R given by f(x, y) = (2 -...
Please Consider the function f : R -> R given by f(x, y) = (2 - y, 2 - x). (a) Prove that f is an isometry. (b) Draw the triangle with vertices A = (1, 2), B = (3, 1), C = (3, 2), and the triangle with vertices f(A), f(B), f(C). (c) Is f a rotation, a translation, or a glide reflection? Explain your answer.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT