Question

In: Chemistry

Phthalic acid, H2C8H4O4, is a diprotic acid, with the following Ka values: Ka1 = 0.0012 and...

Phthalic acid, H2C8H4O4, is a diprotic acid, with the following Ka values: Ka1 = 0.0012 and Ka2 = 3.9 X 10-6. What is the pH of a solution that contains 2.50 grams of phthalic acid dissolved in enough water to make 500.00 mL of water.

Solutions

Expert Solution


Related Solutions

What is the pH of 0.41 M H3PO4? The Ka values for phosphoric acid are Ka1...
What is the pH of 0.41 M H3PO4? The Ka values for phosphoric acid are Ka1 = 7.5×10-3, Ka2 = 6.2×10-8, and Ka3 = 3.6×10-13.
Phathalic acid, H2C8H4O4, is a diprotic acid and has a concentration of 2.9 M. Ka1 =...
Phathalic acid, H2C8H4O4, is a diprotic acid and has a concentration of 2.9 M. Ka1 = 0.0012 and Ka2 = 3.9 x 10-6. Estimate the concentration of [HC8H4O4-] and [C8H4O4-2] at equilibrium. Determine Kb1 and Kb2. Determine the pH of the solution at each proton dissociation. 11. Calculate the molar solubility of calcium hydroxide (Ksp = 4.8 x 10^6 I NEED TO KNOW HOW DID THEY GET THIS ANSWER PLEASE 0.0012 = x2/2.9 x = 0.059 M equilibrium concentration of...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 2.40× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 2.40× 10–4 and Ka2 = 2.70× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. .185M solution of NaHA .185M solution of Na2A
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.63× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.63× 10–4 and Ka2 = 4.71× 10–11. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.184 M solution of H2A (b) a 0.184 M solution of NaHA (c) a 0.184 M solution of Na2A
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.66× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.66× 10–4 and Ka2 = 4.99× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.121 M solution of H2A pH = ? [H2A]=? [HA-]=? [A2-]=? (b) a 0.121 M solution of NaHA pH = ? [H2A]=? [HA-]=? [A2-]=? (c) a 0.121 M solution of Na2A pH = ? [H2A]=? [HA-]=? [A2-]=?
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.94× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.94× 10–4 and Ka2 = 2.17× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.147 M solution of H2A (b) a 0.147 M solution of NaHA
Oxalic acid , HOOCCOOH, is a diprotic acid with Ka1= 0.056 and Ka2=1.5x10-4. Determine the equilibrium...
Oxalic acid , HOOCCOOH, is a diprotic acid with Ka1= 0.056 and Ka2=1.5x10-4. Determine the equilibrium [HOOCCOOH] in a solution with an initial concentration of 0.116 M oxalic acid . HOOCCOOH = HOOCCOO- + H+ HOOCCOO- = -OOCCOO- + H+
Oxalic acid , HOOCCOOH (aq) , is a diprotic acid with Ka1= 0.056 and Ka2=1.5x10-4. Determine...
Oxalic acid , HOOCCOOH (aq) , is a diprotic acid with Ka1= 0.056 and Ka2=1.5x10-4. Determine the pH of a 0.12 M oxalic acid solution. HOOCCOOH(aq) = HOOCCOO-(aq) + H+(aq) HOOCCOO-(aq) = -OOCCOO-(aq) + H+(aq)
1) Phosphorous acid, H3PO3, is actually a diprotic acid for which Ka1= 5.0 × 10-2 and...
1) Phosphorous acid, H3PO3, is actually a diprotic acid for which Ka1= 5.0 × 10-2 and Ka2= 2.0 × 10-7. What are the values of [H+], [H2PO3-], and [HPO32-] in a 6.0 M solution of H3PO3? What is the pH of the solution? 2) What is the pH of a 1.6 M solution of Na3PO4? In this solution, what are the concentrations of HPO42-, H2PO4-, and H3PO4? 3)Ascorbic acid (vitamin C) is a diprotic acid, H2C6H6O6. Calculate [H+], pH, and...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.61× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.61× 10–4 and Ka2 = 4.02× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.124 M solution of H2A pH [H2A] [HA-] [A2-] (b) a 0.124 M solution of NaHA pH [H2A] [HA-] [A2-] (c) a 0.124 M solution of Na2A pH [H2A] [HA-] [A2-]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT