Question

In: Physics

A parallel-plate capacitor with circular plates of radius a separated by a distance d is being...

A parallel-plate capacitor with circular plates of radius a separated by a distance d is being charged though a resistor R and battery with emf E.

1 (a) (5pts.) Make a diagram showing the direction of the induced magnetic field between the plates.

(b) (15pts) Show that the magnitude of this induced magnetic field r < a is given by B(r) = µ0 r 2π a2 E R e −t/RC, where r is the distance to the axis of symmetry of the plates.

(c) (4pts.) Why is the magnetic field independent on the distance to either of the plates?

(d) (6pts.) What is the maximum magnetic field between the plates if they have a radius of a = 1.0 cm, and the capacitor is being charged by a 120.0 V battery through a 5.0 Ω resistor?

Solutions

Expert Solution


Related Solutions

Problem 2 – The plates of a parallel-plate capacitor are separated by a distance d =...
Problem 2 – The plates of a parallel-plate capacitor are separated by a distance d = 0.2 m. There is vacuum between the plates. The voltage difference between the plates is 150 V. The capacitance of the plates is 3 μF. a) (6 pts) Find the magnitude of the electric field between the plates (ignoring edge effects). b) (12 pts) An alpha particle, which is doubly ionized helium, He2+ (charge = 2e where e is the elementary charge, mass =...
A parallel-plate capacitor made of circular plates of radius 65 cm separated by 0.30 cm is...
A parallel-plate capacitor made of circular plates of radius 65 cm separated by 0.30 cm is charged to a potential difference of 800 Volts by a battery. Then a sheet of mylar is pushed between the plates, completely filling the gap between them. How much additional charge flows from the battery to one of the plates when the mylar is inserted?
Suppose two circular metallic plates of radius R and separation d forms a parallel plate capacitor....
Suppose two circular metallic plates of radius R and separation d forms a parallel plate capacitor. Let Q be the instantaneous value of charge on either plate and is changing with time. (a) Calculate the Poynting vectorS.(b) How is the net energy flow into the capacitor is related to the rate of change of capacitor energy?
Suppose that a parallel-plate capacitor has circular plates with radius R = 18 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 18 mm and a plate separation of 3.6 mm. suppose also that a sinusoidal potential difference with a maximum value of 153 V and a frequency of 60 Hz is applied across the plates: that is, V = (153 V) sin[2 ?(60 Hz)t] Find Bmax, the maximum value of the induced magnetic that occurs at r = R.
Suppose that a parallel-plate capacitor has circular plates with radius R = 60.0 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 60.0 mm and a plate separation of 4.6 mm. Suppose also that a sinusoidal potential difference with a maximum value of 360 V and a frequency of 120 Hz is applied across the plates; that is V=(360.0 V)sin((2.*π)*(120 Hz * t)). Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. Find B(r = 30.0 mm). Find B(r = 120.0 mm). Find...
Suppose that a parallel-plate capacitor has circular plates with radius R = 28 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 28 mm and a plate separation of 5.5 mm. Suppose also that a sinusoidal potential difference with a maximum value of 140 V and a frequency of 77 Hz is applied across the plates; that is, V = (140 V) sin[2π(77 Hz)t]. Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R.
A parallel plate capacitor with a plate area of 2.00cm^2, separated by a distance of 2.00mm...
A parallel plate capacitor with a plate area of 2.00cm^2, separated by a distance of 2.00mm is connected to a power supply with a potential difference of 240V. Find the capacitance and charge on each plate.
A parallel-plate capacitor with circular plates and a capacitance of 10.3 μF is connected to a...
A parallel-plate capacitor with circular plates and a capacitance of 10.3 μF is connected to a battery which provides a voltage of 11.2 V . What is the charge on each plate? How much charge would be on the plates if their separation were doubled while the capacitor remained connected to the battery? How much charge would be on the plates if the capacitor were connected to the battery after the radius of each plate was doubled without changing their...
A gigantic parallel plate capacitor with area of plates of 1.1x108 m 2 and separated by...
A gigantic parallel plate capacitor with area of plates of 1.1x108 m 2 and separated by distance 1500 m connected to source of a potential difference 35 million volts. Define potential energy of the capacitor.
A plane parallel-plate capacitor consists of two identical circular metal plates, each of radius 2.50 cm....
A plane parallel-plate capacitor consists of two identical circular metal plates, each of radius 2.50 cm. the plates separated by 1.00 micrometer. The charge on the capacitor is 3.50 nC. Values of standard constant can be found in your notes or the textbook. For these questions, enter only the numerical values. Do not enter the units, which are already given after the blank. Note that the data is given to 3 significant figures. You MUST enter your answers also to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT