Question

In: Mechanical Engineering

a)State the ideal cycle most appropriate to the actual operations undergone the modem Diesel engine ....

a)State the ideal cycle most appropriate to the actual operations undergone the modem Diesel engine .
b)give reasons why the actual cycle is made approximate to the ideal heat exchange process.
c) state how the combustion process in the actual cycle is made approximate to the ideal heat exchange process.

Solutions

Expert Solution


Related Solutions

A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state...
A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state 1, compression ratio (r), and cutoff ratio (rc) determine the efficiency and other values listed below. Note: The gas constant for air is R=0.287 kJ/kg-K. Given Values T1 (K) = 338 P1 (kPa) = 130 r = 14.5 rc = 1.25 a) Determine the specific internal energy (kJ/kg) at state 1. b) Determine the relative specific volume at state 1. c) Determine the relative...
At the beginning of compression of an ideal Diesel cycle the gas has a temperature and...
At the beginning of compression of an ideal Diesel cycle the gas has a temperature and pressure of 400C and 90 kN/m2, respectively. The volume ratio of compression is 16:1. The maximum temperature of the cycle is 14000C. Determine, for the cycle, the pressure and temperature at each of the cycle process change points,                            [8] the work done/kg gas,                                                                                                                           [4] the thermal efficiency,                                                                                                                           [4] the work ratio,                                                                                                                                         [3] the mean effective pressure,...
An ideal diesel engine uses air as the working fluid and operates with a thermal efficiency...
An ideal diesel engine uses air as the working fluid and operates with a thermal efficiency ?th =0.5 with a rate of heat addition Qin=120 kW. The temperature at the beginning and the end of the addition heat (combustion) are respectively: T2=900 K and T3=2100 K. Assume constant specific heats (Cp and Cv). The air properties at a room temperature T1=293.0 K are: Cp=1.005 kJ/kg.K, Cv=0.718KJ/kg.K, the gas constant of air is R=0.287 kJ/kg.K and the ratio of specific heats...
An ideal diesel engine has a compression ratio of 20 and uses air as the working...
An ideal diesel engine has a compression ratio of 20 and uses air as the working fluid. The state of air at the beginning of the compression process is 95 kPa and 200C. If the maximum temperature in the cycle is not to exceed 2200 K, Determine: a) The thermal efficiency, and b) The mean effective pressure, and Assume constant specific heats for air at room temperature.
An ideal diesel engine has a compression ratio of 20 and uses air as the working...
An ideal diesel engine has a compression ratio of 20 and uses air as the working fluid. The state of air at the beginning of the compressor process is 100 kpa and 27 C. The maximum temperature in the cycle is 2200 K and the cutoff ratio is 1.2 Determine the following: The internal energies at the beginning and the end of the compression The enthalpy before and end of the combustion The internal energy before and end of the...
Consider an automobile engine which operates on the ideal Otto cycle. In this engine, air is...
Consider an automobile engine which operates on the ideal Otto cycle. In this engine, air is compressed with a compression ratio of 10. At the beginning of the compression process, air is at 105 kPa and 17oC, and in the combustion process 640 kJ/kg of heat is added to air. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat-addition (combustion) process, (b) the net work output, (c)...
The compression ratio of an ideal air-powered Diesel cycle is 20. At the beginning of the...
The compression ratio of an ideal air-powered Diesel cycle is 20. At the beginning of the compression process, the pressure of the air is 100 kPa, the temperature is 20 ° C, and the highest temperature of the cycle is required not to exceed 2250 K. Show the cycle in the P-v diagram. Accept specific temperatures constant at room temperature. k=1.4 CP=1.005 kJ/kgK CV=0.718 kJ/kgK R=0.287 kJ/kgK a) Calculate the temperatures entering and leaving the cycle, the thermal efficiency of...
A CI engine operating on the air standard diesel cycle has cylinder condtioons at the start...
A CI engine operating on the air standard diesel cycle has cylinder condtioons at the start of compression of 65 degrees C and 130 kPa. light diesel fuel is used at an equivalence ratio of 0.8 with a combustion efficiency of 0.98. compression ratio = 18 Calculate: temperature and pressure in each state of the cycle (0c) pressure at each state of the cycle (kpa) cutoff ratio indicated thermal efficiency (%) heat lost in exhaust (KJ/Kg)
A mole of an ideal gas goes through a cycle of a Carnot engine. Draw the...
A mole of an ideal gas goes through a cycle of a Carnot engine. Draw the pressure vs volume and entropy vs temperature planes for this cycle. What do the diagrams look like when the efficiency of the cycle is 50% and 99%. Then Calculate the work done per cycle by the gas and find the efficiency of the cycle.
The compression ratio is 8 in an engine working with the ideal Otto cycle. The heat...
The compression ratio is 8 in an engine working with the ideal Otto cycle. The heat transfer to the engine takes place from a heat source at a temperature of 1000 ° C and the heat transfer from the engine to the outside takes place in the environment of 20 ° C and 100 kPa. At the start of the isentropic compression process, the temperature is 50 ⁰C and the pressure is 110 kPa. The temperature at the end of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT