Question

In: Mechanical Engineering

Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric...

Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of 48 m3/min and exits at 12 bar, 400 K. Heat transfer occurs at a rate of 8 kW from the compressor to its surroundings.

Assuming the ideal gas model for air and neglecting kinetic and potential energy effects, determine the power input, in kW.

Solutions

Expert Solution


Related Solutions

An air compressor is operating at a steady state. The air enters at with a volumetric...
An air compressor is operating at a steady state. The air enters at with a volumetric flow rate 1.2 m^3/s at 170 kPa and 22 degrees celsius with negligible velocity and leaves at 1500 kPa with velocity of 200 m/s. The power to the compressor is 60 kW and the compressor is cooled at a rate of 15 kJ/kg. Determine the exit area.
Nitrogen (N2) at 1 bar, 300 K enters a compressor operating at steady state and is...
Nitrogen (N2) at 1 bar, 300 K enters a compressor operating at steady state and is compressed adiabatically to an exit state of 16 bar, 750 K. The N2 is modeled as an ideal gas and kinetic and potential energy effects are negligible. Determine the work input, in kJ per kg of N2 flowing, the rate of entropy production, in kJ/K per kg of N2 flowing, and the isentropic compressor efficiency.
Carbon dioxide (CO2) at 1 bar, 300 K enters a compressor operating at steady state and...
Carbon dioxide (CO2) at 1 bar, 300 K enters a compressor operating at steady state and is compressed adiabatically to an exit state of 10 bar, 540 K. The CO2 is modeled as an ideal gas, and kinetic and potential energy effects are negligible. For the compressor, determine: (a) the work input, in kJ per kg of CO2 flowing, (b) the rate of entropy production, in kJ/K per kg of CO2 flowing, and (c) the percent isentropic compressor efficiency.
Air enters a turbine operating at steady state at 6 bar, 1200 K and expands to...
Air enters a turbine operating at steady state at 6 bar, 1200 K and expands to 0.8 bar. The turbine is well insulated, and kinetic and potential energy effects can be neglected. Assuming ideal gas behavior for the air, what is the maximum theoretical work that could be developed by the turbine in kJ per kg of air flow?
Air enters a turbine operating at steady state at 6 bar, 1600 K and expands to...
Air enters a turbine operating at steady state at 6 bar, 1600 K and expands to 0.8 bar. The turbine is well insulated, and kinetic and potential energy effects can be neglected. Assuming ideal gas behavior for the air, what is the maximum theoretical work that could be developed by the turbine in kJ per kg of air flow?
Air enters a turbine operating at steady state at 10 bar, 1200 K and expands to...
Air enters a turbine operating at steady state at 10 bar, 1200 K and expands to 0.8 bar. The turbine is well insulated, and kinetic and potential energy effects can be neglected. Assuming ideal gas behavior for the air, what is the maximum theoretical work that could be developed by the turbine in kJ per kg of air flow?
Water vapor at 5 bar, 320°C enters a turbine operating at steady state with a volumetric...
Water vapor at 5 bar, 320°C enters a turbine operating at steady state with a volumetric flow rate of 3 m3/s and expands adiabatically to an exit state of 1 bar, 160°C. Kinetic and potential energy effects are negligible. Determine for the turbine: (a) the power developed, in kW. (b) the rate of entropy production, in kW/K. (c) the percent isentropic turbine efficiency.
Water vapor at 5 bar, 320°C enters a turbine operating at steady state with a volumetric...
Water vapor at 5 bar, 320°C enters a turbine operating at steady state with a volumetric flow rate of 3 m3/s and expands adiabatically to an exit state of 1 bar, 200°C. Kinetic and potential energy effects are negligible. Determine for the turbine: (a) the power developed, in kW. (b) the rate of entropy production, in kW/K. (c) the percent isentropic turbine efficiency.
Air enters a compressor operating at steady state with a pressure of 14.7 lbf/in.2, a temperature...
Air enters a compressor operating at steady state with a pressure of 14.7 lbf/in.2, a temperature of 70°F, and a volumetric flow rate of 500 ft3/min. The air velocity in the exit pipe is 700 ft/s and the exit pressure is 133 lbf/in.2 If each unit mass of air passing from inlet to exit undergoes a process described by pv1.34 = constant, determine (a) the exit temperature, in °F, and (b) the diameter of the exit pipe, in inches.
A compressor, operating at steady-state, increases the pressure of an air stream from 1 bar to...
A compressor, operating at steady-state, increases the pressure of an air stream from 1 bar to 10 bar while losing 4.2 kW of heat to the surroundings. At the compressor inlet, the air is at 25o C and has a velocity of 14 m/s. At the compressor outlet, the air is at 350o C and has a velocity of 2.4 m/s. If the compressor inlet has a cross-sectional area of 500 cm2 and the air behaves as an ideal gas,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT