Question

In: Chemistry

10 kJ of heat is absorbed by a gas dissociation reaction occurring reversibly and isothermally at...

10 kJ of heat is absorbed by a gas dissociation reaction occurring reversibly and isothermally at 300

K in an elastic balloon. The gas mixture expands producing 5 kJ of work against the tension of the

balloon and the pressure of the atmosphere. Calculate the change in entropy of the gas mixture in the

balloon and the change in entropy of the universe

Solutions

Expert Solution


Related Solutions

Three moles of an ideal gas expand isothermally and reversibly from 90 to 300 L at...
Three moles of an ideal gas expand isothermally and reversibly from 90 to 300 L at 300 K. a) Calculate ΔUm, ΔSm, w per mole, and q per mole. b) If the expansion is carried out irreversibly by allowing the gas to expand rapidly into a vacuum, determine ΔUm, ΔSm, w per mole, and q per mole
Find heat absorbed by water (kJ) and ΔrH (kJ mol-1) of the following reaction Mg + 2 HCl (aq) MgCl2 + H2
Find heat absorbed by water (kJ) and ΔrH (kJ mol-1) of the following reaction Mg + 2 HCl (aq)   MgCl2 + H2 Mass of Mg: 20.8mg Moles of Mg: calculate using formula m/M Ti= 19.9 C Tf= 33.4 C density of water: 1g/mol 5M of 1.0 M HCl V of water is 5g
how many kj of heat are absorbed when 455g of water at 80.0C are heated to...
how many kj of heat are absorbed when 455g of water at 80.0C are heated to 100.0C and then completely evaporated at this tempertature? The Specific heat of water 4.184j/C, g and the molar heat of evaporation for water is 40.7kJ/mol.
A heat engine with a monatomic ideal gas reversibly goes through the following cycle. A ⟶...
A heat engine with a monatomic ideal gas reversibly goes through the following cycle. A ⟶ B is an isothermal process. B⟶ C is an isovolumetric process. C⟶ A is an adiabatic process. (i) Determine the work done on the ideal gas during each cycle of this heat engine, (ii) Determine the heat flow into the gas during each cycle of this heat engine (iii) Determine the net work done by one cycle (iv) Determine the efficiency of this heat...
The gas phase reaction           2A + B →2C is   carried   out   isothermally   and   isobarically.   The   reaction  ...
The gas phase reaction           2A + B →2C is   carried   out   isothermally   and   isobarically.   The   reaction   is    first    order    in    A    and    first order in B. The feed is equal molar in A and B and the entering concentration of A is 0.5 mol/dm3. The specific reaction rate is k = 4.0 dm3/mol s. Write   the   rate   of   reaction,   –rA,   solely   as   a   function   of   conversion,    evaluating    all    parameters.
The gas phase reaction           2A + B →2C is   carried   out   isothermally   and   isobarically.   The   reaction  ...
The gas phase reaction           2A + B →2C is   carried   out   isothermally   and   isobarically.   The   reaction   is    first    order    in    A    and    first order in B. The feed is equal molar in A and B and the entering concentration of A is 0.5 mol/dm3. The specific reaction rate is k = 4.0 dm3/mol s. Write   the   rate   of   reaction,   –rA,   solely   as   a   function   of   conversion,    evaluating    all    parameters.
How much heat in kilojoules is evolved or absorbed in the reaction of 292.5 g of...
How much heat in kilojoules is evolved or absorbed in the reaction of 292.5 g of calcium oxide with enough carbon to produce calcium carbide? CaO(s)+3C(s)→CaC2(s)+CO(g) ΔH∘ = 464.6kJ
when 1.0 mol of NO(g) forms from its elements, 90.29 kJ of heat is absorbed. How...
when 1.0 mol of NO(g) forms from its elements, 90.29 kJ of heat is absorbed. How much heat is evolved when 5.40 g of NO decomposes to its elements?
Hydrogen gas and oxygen gas release 482.6 kJ of heat when they combine to form steam....
Hydrogen gas and oxygen gas release 482.6 kJ of heat when they combine to form steam. Is this reaction endothermic or exothermic? In which direction does heat transfer (between system and the surroundings) for this reaction? Is deltaH for this reaction positive or negative?
For the reaction: 2A + B2 -> 2AB,+ H =+50.0 kJ a) Heat is released to...
For the reaction: 2A + B2 -> 2AB,+ H =+50.0 kJ a) Heat is released to the surroundings b) The standard enthalpy of formation for AB is 50.0 kJ c) The molecule AB contains less energy than A or B2 d) The reaction is endothermic e) The bond energy for each A-B bond is 50.0 kJ
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT