Question

In: Chemistry

how many kj of heat are absorbed when 455g of water at 80.0C are heated to...

how many kj of heat are absorbed when 455g of water at 80.0C are heated to 100.0C and then completely evaporated at this tempertature? The Specific heat of water 4.184j/C, g and the molar heat of evaporation for water is 40.7kJ/mol.

Solutions

Expert Solution

Answer - Given, mass of water = 455 g , ti = 80.0oC, tf = 100.0oC

Specific heat of water = 4.184 J/goC , ∆Hvap = 40.7 kJ/mol

Moles of water = 455 g / 18.016 g.mol-1

                         = 25.3 moles

We know the formula for the heat

q1 = m*C*∆t

    = 455 g * 4.184 J/goC * (100.0-80.0)oC

    = 38074.4 J

Now heat from the 100.0 to 100.0oC

q2 = m*∆Hvap

      = 18518.5 J

So, total heat absorbed = q1 + q2

                                     = 38074.4 + 18518.5

                                     = 56593 J

                             = 56.59 kJ


Related Solutions

When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 8.77 g of CsBr(s) are dissolved in 115.80 g of water, the temperature of the solution drops from 22.62 to 20.13 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.62 J/°C....
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 4.56 g of NH4Cl(s) are dissolved in 116.60 g of water, the temperature of the solution drops from 24.83 to 22.08 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.65 J/°C....
1) When a solid dissolves in water, heat may be evolved or absorbed. The heat of...
1) When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 2.99 g of CuSO4(s) are dissolved in 109.10 g of water, the temperature of the solution increases from 23.83 to 26.84 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.58...
1) When a solid dissolves in water, heat may be evolved or absorbed. The heat of...
1) When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 23.66 g of Cs2SO4(s) are dissolved in 105.90 g of water, the temperature of the solution drops from 24.54 to 21.19 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.60...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 2.06 g of CaCl2(s) are dissolved in 112.20 g of water, the temperature of the solution increases from 23.13 to 26.44 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.84 J/°C....
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 0.68 g of KOH(s) are dissolved in 104.30 g of water, the temperature of the solution increases from 22.14 to 23.80 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.82 J/°C....
1a. When a solid dissolves in water, heat may be evolved or absorbed. The heat of...
1a. When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 1.33 g of CaBr2(s) are dissolved in 103.70 g of water, the temperature of the solution increases from 24.23 to 25.85 °C. Based on the student's observation, calculate the enthalpy of dissolution of CaBr2(s) in kJ/mol. Assume the specific heat of the solution is...
1. When a solid dissolves in water, heat may be evolved or absorbed. The heat of...
1. When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 11.14 g of CsBr(s) are dissolved in 119.50 g of water, the temperature of the solution drops from 22.60 to 19.51 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.61...
when 1.0 mol of NO(g) forms from its elements, 90.29 kJ of heat is absorbed. How...
when 1.0 mol of NO(g) forms from its elements, 90.29 kJ of heat is absorbed. How much heat is evolved when 5.40 g of NO decomposes to its elements?
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution(dissolving)...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution(dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 5.22 g of CsClO4(s) are dissolved in 100.70 g of water, the temperature of the solution drops from 23.33 to 20.10 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.64 J/°C. Based...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT