Question

In: Other

The gas phase reaction           2A + B →2C is   carried   out   isothermally   and   isobarically.   The   reaction  ...

The gas phase reaction           2A + B →2C

is   carried   out   isothermally   and   isobarically.   The   reaction   is    first    order    in    A    and    first order in B. The feed is equal molar in A and B and the entering concentration of A is 0.5 mol/dm3. The specific reaction rate is k = 4.0 dm3/mol s.

Write   the   rate   of   reaction,   –rA,   solely   as   a   function   of   conversion,    evaluating    all    parameters.

Solutions

Expert Solution

Please find the attachment.


Related Solutions

The gas phase reaction           2A + B →2C is   carried   out   isothermally   and   isobarically.   The   reaction  ...
The gas phase reaction           2A + B →2C is   carried   out   isothermally   and   isobarically.   The   reaction   is    first    order    in    A    and    first order in B. The feed is equal molar in A and B and the entering concentration of A is 0.5 mol/dm3. The specific reaction rate is k = 4.0 dm3/mol s. Write   the   rate   of   reaction,   –rA,   solely   as   a   function   of   conversion,    evaluating    all    parameters.
The gas phase reaction: 2A+B = 3C , is carried out in an isothermal packed bed...
The gas phase reaction: 2A+B = 3C , is carried out in an isothermal packed bed reactor. The rate is first order with respect to reactants A and B (second order overall) with the rate constant of 14 [liter2 /mole kg of catalyst sec.]. The feed is 50% A, 25 % B and 25 % inert at temperature of 500 K and P = 18 atm and a total flow rate of 20 mole/sec. The exit pressure is measured to...
The elementary irreversible gas phase reaction A --> B + C is carried out in a...
The elementary irreversible gas phase reaction A --> B + C is carried out in a PFR packed with catalyst. Pure A enters the reactor at a volumetric flowrate of 20 dm3 /s at a pressure of 10 atm and 450K. CpA=40 J/mol.K HfA=-70 kJ/mol   (TR=273 K) CpB=25 J/mol.K HfB=-50 kJ/mol CpC=15 J/mol.K HfC=-40 kJ/mol k = 0.133 exp ( E/R*[ 1/450 ? 1/T ] ) dm3 kg cat. s with E = 31.4 kJ/mol a) Plot the conversion and...
The elementary irreversible gas phase reaction A --> B + C is carried out in a...
The elementary irreversible gas phase reaction A --> B + C is carried out in a PFR packed with catalyst. Pure A enters the reactor at a volumetric flowrate of 20 dm3 /s at a pressure of 10 atm and 450K. Consider that the heat is removed by a heat exchanger jacketing the reactor. The flowrate of coolant through the jacket is sufficiently high so that the ambient exchanger temperature is constant at 50oC. CpA=40 J/mol.K HfA=-70 kJ/mol CpB=25 J/mol.K...
The elementary irreversible gas phase reaction A --> B + C is carried out in a...
The elementary irreversible gas phase reaction A --> B + C is carried out in a PFR packed with catalyst. Pure A enters the reactor at a volumetric flowrate of 20 dm3 /s at a pressure of 10 atm and 450K. Consider that the heat is removed by a heat exchanger jacketing the reactor. The flowrate of coolant through the jacket is sufficiently high so that the ambient exchanger temperature is constant at 50oC. CpA=40 J/mol.K HfA=-70 kJ/mol CpB=25 J/mol.K...
The irreversible elementary reaction 2A > B takes place in the gas phase in an isothermal...
The irreversible elementary reaction 2A > B takes place in the gas phase in an isothermal tubular reactor. The feed is one mole of A per one mole of C, an inert. The entering temperature and pressure are 427°C and 10 atm, respectively. The gas constant R = 0.08206 atm · L/mol · K. (a) Determine the concentration of A at the entrance to the reactor. (b) If CA0 = 1.0 mol/L, what is the concentration of A at 90%...
This is set of homogeneous and gas phase reactions: A-->B-->C . The reaction scheme is carried...
This is set of homogeneous and gas phase reactions: A-->B-->C . The reaction scheme is carried out in a constant volume, ideal batch reactor at constant temperature. The first reaction is first order with respect to A with a rate constant k1 while the second reaction is zero order with a rate constant k2. Initially, the reactor contains only A at a concentration CA0. a) Derive expressions for the concentration of A, B, and C as a function of reaction...
The elementary liquid phase reaction A + B C is carried out in a 550 dm3...
The elementary liquid phase reaction A + B C is carried out in a 550 dm3 reactor. The entering concentrations of streams A and B are both 2-molar and the specific reaction rate is 0.015 dm3/(mol*min). 1.1 Calculate the time to reach 80%conversion if the reactor is a batch reactor filled to the brim. 1.2 Assuming a stoichiometric feed (10 mol A/min) to a continuous flow reactor, calculate the reactor volume and space-time to achieve 80% conversion if the reactor...
In the gas-phase reaction 2A+B ⇄ 3C + 2D, it was found that when 1.50 mole...
In the gas-phase reaction 2A+B ⇄ 3C + 2D, it was found that when 1.50 mole A, 2.00 mole B and 1.00 mole D were mixed and allowed to cometo equilibrium at 25oC, the resulting mixture contained 1.20 mol C at a total pressure of 2.00 bar. Calculate (a) the mole fractions of each species at equalibrium xA=_______, xB=_______, xc=_______, xD=________ (b) Kx =_________ (c)Kp=_______ (d) ∆rGo=_________ Please enter all answers in (a) with 3 decimals. for example, 0.4467 is...
Consider the gas phase reversible reaction 2A ↔ B that occurs at atmospheric pressure. a) If...
Consider the gas phase reversible reaction 2A ↔ B that occurs at atmospheric pressure. a) If the equilibrium constant Ka = 0.1, what are the equilibrium mole fractions of A and B? b) Assuming the reaction is elementary, write the rate law using kA and k-A as the forward and reverse rate constants, respectively. What is the equilibrium constant Kc in terms of kA and k-A? Assuming an ideal gas system, write an expression for Ka in terms of kA...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT