K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k]
+ Par value/(1 + YTM)^N |
k=1 |
|
K =9 |
1055.2 =∑ [(5.4*1000/100)/(1 + YTM/100)^k]
+ 1000/(1 + YTM/100)^9 |
k=1 |
|
YTM% = 4.64 |
Period |
Cash Flow |
Discounting factor |
PV Cash Flow |
Duration Calc |
0 |
($1,055.20) |
=(1+YTM/number of coupon payments in the year)^period |
=cashflow/discounting factor |
=PV
cashflow*period |
1 |
54.00 |
1.05 |
51.61 |
51.61 |
2 |
54.00 |
1.09 |
49.32 |
98.63 |
3 |
54.00 |
1.15 |
47.13 |
141.39 |
4 |
54.00 |
1.20 |
45.04 |
180.16 |
5 |
54.00 |
1.25 |
43.04 |
215.22 |
6 |
54.00 |
1.31 |
41.13 |
246.81 |
7 |
54.00 |
1.37 |
39.31 |
275.17 |
8 |
54.00 |
1.44 |
37.57 |
300.54 |
9 |
1,054.00 |
1.50 |
700.75 |
6,306.72 |
|
|
|
Total |
7,816.25 |
Macaulay duration =(∑ Duration calc)/(bond price*number of coupon
per year) |
=7816.25/(1055.2*1) |
=7.407364 |
Modified duration = Macaulay duration/(1+YTM) |
=7.41/(1+0.0464) |
=7.078903 |
dollar value = modified duration*current price*1 percent change
in YTM*0.01 =7.0789*1055.2*0.01*0.01=0.747