In: Finance
Consider a bond with a coupon of 5.6 percent, ten years to maturity, and a current price of $1,057.70. Suppose the yield on the bond suddenly increases by 2 percent.
a. Use duration to estimate the new price of the bond. (Do not round intermediate calculations. Round your answer to 2 decimal places.)
b. Calculate the new bond price using the usual bond pricing formula. (Do not round intermediate calculations. Round your answer to 2 decimal places.)
Firstly we calculate the YTM. For this use the excel function ..... " RATE"
Syntax .............. = Rate(nper, pmt, -pv, fv, type)
nper = number of periods = 10
pmt = coupon payment = 1000 * 0.056 = 56
pv = current price of the bond = 1057.70
fv = future value or face value of the bond = 1000
=Rate(10,56,-1057.70,1000,0)
= 4.8579%
Now compute the Macaulay duration and then estimate the modified duration.
t | CF | DF | PV | W | W*t |
1 | 56 | 0.953672 | 53.40561 | 0.050492 | 0.050492 |
2 | 56 | 0.909489 | 50.93141 | 0.048153 | 0.096306 |
3 | 56 | 0.867354 | 48.57184 | 0.045922 | 0.137766 |
4 | 56 | 0.827171 | 46.32158 | 0.043795 | 0.175179 |
5 | 56 | 0.78885 | 44.17558 | 0.041766 | 0.208828 |
6 | 56 | 0.752303 | 42.12899 | 0.039831 | 0.238985 |
7 | 56 | 0.71745 | 40.17722 | 0.037985 | 0.265898 |
8 | 56 | 0.684212 | 38.31588 | 0.036226 | 0.289805 |
9 | 56 | 0.652514 | 36.54076 | 0.034547 | 0.310926 |
10 | 1056 | 0.622284 | 657.1316 | 0.621284 | 6.212836 |
Macaulay Duration | 7.987022 | ||||
Modified Duration | 7.948409 |
Modified duration = Macaulay duration / ( 1 + ytm/n) = 7.9870 / (1 + 0.048579 / 10) = 7.9484
Question - 1
Bond duration of 7.8494 indicates that for every 1% change in YTM we have 7.9484 % change in bond price. In the given case YTM increase by 2% ........... so bond price decreases by 2 * 7.9484 = 15.8968 %.
New Bond price = current bond price * ( 1 - % decrease )
= 1057.70 * ( 1 - 0.158968 ) = 889.56
Question - 2
Using the bond formula
Price of bond = coupon * [ 1 - (1+r)-n ] / r + Face value * ( 1 + r )-n
r = new YTM = 0.048579 + 0.02 = 0.068579
= 56 * [ 1 - (1.068579)-10 ] / 0.068579 + 1000 * (1.068579)-10
= 56 * 7.06994947 + 1000 * 0.51514994
= 911.07