Question

In: Chemistry

If at the beginning of the reaction you used 5.29 g N2 and 9.80 g O2,...

If at the beginning of the reaction you used 5.29 g N2 and 9.80 g O2, what is the theoretical yield (in grams) of N2O5 (you will need to find the limiting reagent and then the theoretical yield of N2O5from this reagent)?

Solutions

Expert Solution

The balanced reaction is

N2 + 2.5 O2   ------> N2O5

N2 moles = mass of N2 / molar mass of N2 = 5.29 g / 28 g/mol = 0.18893

O2 moles = 9.8 g / 32g/mol = 0.30625

as per reaction O2 moles needed = 2.5 x N2 moles = 2.5 x 0.18893 = 0.47

But we have only 0.30625 moles O2

Hence O2 being relatively less in moles   is the limiting reagent

N2O5 moles produced = (1/2.5) x O2 moles = ( 1/2.5) x 0.30625 = 0.1225

N2O5 mass expected = N2O5 moles expected x molar mass of N2O5

         = 0.1225 mol x 108 g/mol = 13.23 g

Thus theoretical yield   of N2O5 = 13.23 g


Related Solutions

The following reaction N2 (g) + O2 (g) ⇔ 2 NO (g) has a KP =...
The following reaction N2 (g) + O2 (g) ⇔ 2 NO (g) has a KP = 0.032 at a particular temperature. At that temperature, a vessel is filled with 0.040 atm of N2 (g), 0.040 atm of O2 (g) and 0.043 atm of NO (g). What is the pressure of NO (g) at equilibrium?
The reaction N2(g)+O2(g)⇌2NO(g) is carried out at a temperature at which Kc = 0.055. The reaction...
The reaction N2(g)+O2(g)⇌2NO(g) is carried out at a temperature at which Kc = 0.055. The reaction mixture starts with only the product, [NO] = 0.0200 M, and no reactants. Part A Find the equilibrium concentrations of N2 at equilibrium. Part B Find the equilibrium concentrations of O2 at equilibrium. Part C Find the equilibrium concentrations of NO at equilibrium.
At a particular temperature Kp = 0.041 for the reaction N2(g) + O2(g) ⇄ 2NO(g) What...
At a particular temperature Kp = 0.041 for the reaction N2(g) + O2(g) ⇄ 2NO(g) What is the equilibrium partial pressure of NO if a flask initially contains 0.12 atm of all three gases? Report the pressure of NO in atm rounded to the nearest hundredth of an atm.
At 3748°C, K = 0.093 for the following reaction. N2(g) + O2(g) equilibrium reaction arrow 2...
At 3748°C, K = 0.093 for the following reaction. N2(g) + O2(g) equilibrium reaction arrow 2 NO(g) Calculate the concentrations of all species at equilibrium for each of the following cases. (a) 1.6 g N2 and 3.0 g O2 are mixed in a 1.3-L flask. (b) 2.0 mol pure NO is placed in a 2.1-L flask.
Consider the following reaction at 173 K: 2 N2O (g) → 2 N2 (g) + O2...
Consider the following reaction at 173 K: 2 N2O (g) → 2 N2 (g) + O2 (g) In one of your laboratory experiments, you determine the equilibrium constant for this process, at 173 K, is 6.678E+57. You are given a table of data that indicates the standard heat of formation (ΔHoform) of N2O is 82.0 kJ/mol. Based on this information, what is the standard entropy change (ΔSorxn) for this reaction at 173 K? ΔSorxn(J/K)=
PART A.Identify the proper form of the equilibrium-constant expression for the equation N2(g)+O2(g)⇌2NO(g) 1.K=[NO][N2][O2] 2.K=[NO]2[N2][O2] 3.K=[N2][O2][NO]2...
PART A.Identify the proper form of the equilibrium-constant expression for the equation N2(g)+O2(g)⇌2NO(g) 1.K=[NO][N2][O2] 2.K=[NO]2[N2][O2] 3.K=[N2][O2][NO]2 4.K=2[NO][N2][O2] PART B. The equilibrium-constant of the reaction NO2(g)+NO3(g)⇌N2O5(g) is K=2.1×10−20. What can be said about this reaction? 1.At equilibrium the concentration of products and reactants is about the same. 2.At equilibrium the concentration of products is much greater than the concentration of reactants. 3.At equilibrium the concentration of reactants is much greater than that of products. 4.There are no reactants left over once...
Consider the first order reaction 2 N2O(g) ⟶ 2 N2 (g) + O2(g). What will [N2O]...
Consider the first order reaction 2 N2O(g) ⟶ 2 N2 (g) + O2(g). What will [N2O] be after 3 half lives when 0.25 moles N2O is placed in a 1.00-L reaction vessel?
For the reaction: N2(g) + 2 O2(g) ↔ 2 NO2(g), Kc = 8.3 × 10-10 at...
For the reaction: N2(g) + 2 O2(g) ↔ 2 NO2(g), Kc = 8.3 × 10-10 at 25°C. What is the concentration of N2 gas at equilibrium when the concentration of NO2 is twice the concentration of O2 gas?
The reaction of CH3OH(g) with N2(g) to give HCN(g), NH3(g), and O2(g) requires 164 kJ/mol of...
The reaction of CH3OH(g) with N2(g) to give HCN(g), NH3(g), and O2(g) requires 164 kJ/mol of CH3OH(g). a) Write a balanced chemical equation for this reaction. Include the phases of all species in the reaction. b)Should the thermal energy involved be written as a reactant or as a product? c) How much heat is involved in the reaction of 70.0 g of CH3OH(g) with excess N2(g) to give HCN(g) and NH3(g) in this reaction?
Consider the equilibrium N2(g)+O2(g)+Br2(g)⇌2NOBr(g) Part A Calculate the equilibrium constant Kp for this reaction, given the...
Consider the equilibrium N2(g)+O2(g)+Br2(g)⇌2NOBr(g) Part A Calculate the equilibrium constant Kp for this reaction, given the following information (at 295 K ): 2NO(g)+Br2(g)⇌2NOBr(g)Kc=2.1 2NO(g)⇌N2(g)+O2(g)Kc=2.2×1030 Express your answer using two significant figures.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT