Question

In: Mechanical Engineering

Calculate the maximum mass flow possible through a frictionless, heat-insulated, convergent nozzle if the entry or...

Calculate the maximum mass flow possible through a frictionless, heat-insulated, convergent nozzle if the entry or stagnation conditions are 5 bar and 15°C and the throat area is 6.5 cm2. Also calculate the temperature of the air at the throat. Take cp = 1.00 kJ kg−1 K−1 and γ = 1.4.

Solutions

Expert Solution


Related Solutions

Air passes through a jet engine nozzle operating at steady state. The flow at the nozzle...
Air passes through a jet engine nozzle operating at steady state. The flow at the nozzle inlet has a temperature of 900° F. The nozzle inlet has an area of 5 ft2. The flow at the nozzle outlet has a temperature of 875° F, a specific volume of 90 ft3/lb, and a velocity of 600 ft/s. The nozzle outlet has an area of 2 ft2. Model the air as an ideal gas with constant specific heats. Evaluate the specific heats...
Hot air flows with a mass flow rate of 0.05 kg/s through an insulated square duct...
Hot air flows with a mass flow rate of 0.05 kg/s through an insulated square duct with side of 0.15m, the hot air enters at 103 oC and after a distance of 5m, cools to 85 oC. The heat transfer coefficient between the duct outer surface and the ambient air (Tair = 0 oC) is 6 W/m2 K. Calculate the heat transfer coefficient between hot air and duct inner wall. Air Cp = 1.011 KJ/kg K; air k = 0.0306...
A small block of mass m and charge Q is placed on an insulated, frictionless, inclined...
A small block of mass m and charge Q is placed on an insulated, frictionless, inclined plane of angle θ as in the figure below. An electric field is applied parallel to the incline. A block of mass m and charge Q rests on an inclined plane that makes an angle θ with the horizontal. (a) Find an expression for the magnitude of the electric field that enables the block to remain at rest. (Use any variable or symbol stated...
1. If an ideal solution of the flow field through a nozzle is shown with a...
1. If an ideal solution of the flow field through a nozzle is shown with a depiction of vectors distributed at points throughout the nozzle that illustrate the magnitude and direction of steady flow through those points, this depiction would be Eulerian or Lagrangian (circle one) 2. If an ideal solution of the flow field through a nozzle is shown with a depiction of vectors attached to particles moving through the nozzle, changing magnitude and direction as they move through...
Problem 1: Carbon dioxide flows isentropically at the rate of 1 kg/s through a convergent-divergent nozzle....
Problem 1: Carbon dioxide flows isentropically at the rate of 1 kg/s through a convergent-divergent nozzle. The stagnation temperature is 310 K and the stagnation pressure is 1400 kPa. If the exit pressure is 101.3 kPa, determine a) throat area, b) exit Mach number and c) exit velocity. Assume sonic (M =1) conditions at throat. (d) plot using MS excel variation of: total temperature, total pressure, total density, density, temperature, Mach number, velocity, speed of sound along the centre line...
HEAT TRANSFER: HEAT EXCHANGER Oil flows in a heat exchanger with a mass flow rate of...
HEAT TRANSFER: HEAT EXCHANGER Oil flows in a heat exchanger with a mass flow rate of 20 kg/s and is to be cooled from 175 to 65°C with water as a coolant flowing at a rate of 30 kg/s and an inlet temperature of 12°C. The overall heat transfer coefficient is U = 1250 W/m2⋅K. a) Sketch the temperature profile and calculate the mean temperature for parallel flow, counter flow, and cross flow heat exchangers.. b) Determine the area required...
Address the following questions related to heat exchanger effectiveness. Recall that the maximum heat transfer possible...
Address the following questions related to heat exchanger effectiveness. Recall that the maximum heat transfer possible is the product of the minimum heat capacity (mass flow rate times specific heat) times the difference between the hot and cold side inlet temperatures. a. sketch the temperature profiles for a 50% and 80% effectiveness heat exchanger. make sure you have the correct shape which includes the degree of steepness at each end. b. What is the effectiveness for a heat exchanger with...
Helium at 200 kPa, 227 C is expanded in steady flow through a nozzle to 100...
Helium at 200 kPa, 227 C is expanded in steady flow through a nozzle to 100 kPa. At these operating conditions the nozzle efficiency is 76%. a) Making the usual nozzle assumptions, calculate the actual velocity at the nozzle exit. Start with the appropriate form of the first law. b) Calculate the actual nozzle exit temperature.
Heat & Mass Transfer Consider the flow of water over a flat plate at a film...
Heat & Mass Transfer Consider the flow of water over a flat plate at a film temperature of 25 °C. The plate is 10m long, and the Reynolds number at the end of the plate is 106. Determine: The free stream velocity Is the flow laminar or turbulent at the end of the plate? Is the flow laminar or turbulent at the mid-length? What is the average Nusselt number? What is the average heat transfer coefficient? What is the Nusselt...
Calculate the maximum mass (in grams) of the following metal sulfides that can be dissolved in...
Calculate the maximum mass (in grams) of the following metal sulfides that can be dissolved in 1.0 L of a solution that is 4.90×10−5 M in Na2S. A. PbS B. ZnS
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT