Question

In: Mechanical Engineering

Helium at 200 kPa, 227 C is expanded in steady flow through a nozzle to 100...

Helium at 200 kPa, 227 C is expanded in steady flow through a nozzle to 100 kPa. At these operating conditions the nozzle efficiency is 76%.

a) Making the usual nozzle assumptions, calculate the actual velocity at the nozzle exit. Start with the appropriate form of the first law.

b) Calculate the actual nozzle exit temperature.

Solutions

Expert Solution


Related Solutions

Air passes through a jet engine nozzle operating at steady state. The flow at the nozzle...
Air passes through a jet engine nozzle operating at steady state. The flow at the nozzle inlet has a temperature of 900° F. The nozzle inlet has an area of 5 ft2. The flow at the nozzle outlet has a temperature of 875° F, a specific volume of 90 ft3/lb, and a velocity of 600 ft/s. The nozzle outlet has an area of 2 ft2. Model the air as an ideal gas with constant specific heats. Evaluate the specific heats...
An air compressor operating in adiabatic steady flow takes in air at 17 C, 200 kPa...
An air compressor operating in adiabatic steady flow takes in air at 17 C, 200 kPa and discharges is at 1300 kPa. Calculate the minimum work required to drive the compressor assuming the compressor has i) constant specific heats. ii) non-constant specific heats.
At steady state, air at 200 kPa, 330 K, and mass flow rate of 0.5 kg/s...
At steady state, air at 200 kPa, 330 K, and mass flow rate of 0.5 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. The inlet cross-sectional area is 6 cm2. At the duct exit, the pressure of the air is 100 kPa and the velocity is 250 m/s. Neglecting potential energy effects and modeling air as an ideal gas with constant cp = 1.008 kJ/kg · K, determine: (a) the velocity of the air at the...
Water vapor goes into a diffuser at steady state, with inlet conditions of 800 kPa, 200°C...
Water vapor goes into a diffuser at steady state, with inlet conditions of 800 kPa, 200°C and velocity of 400 m/s. Superheated steam leaves the outlet at 2 MPa and velocity of 2 100 m/s. The inlet area of the diffuser is 14 cm . The system loses heat at the rate of 25 kJ/s to the surroundings. Neglect changes in potential energy between the inlet and outlet. What is the mass flow rate of the water vapor, in kg/s?...
1. Air enters a steady-state diffuser at T1 = 20 °C, P1 = 100 kPa and...
1. Air enters a steady-state diffuser at T1 = 20 °C, P1 = 100 kPa and leaves at P2 = 105 kPa. You may assume an adiabatic diffuser and constant specific heats. Find T2 if: a) V1 = 10 m/s, V2 = 0 m/s b) V1 = 100 m/s, V2 = 90 m/s c) V1 = 500 m/s, V2 = 490 m/s d) V1 = 1000 m/s, V2 = 990 m/s
A piston‑cylinder device initially contains 0.2 m3 of helium at 100 kPa and 25C. The helium...
A piston‑cylinder device initially contains 0.2 m3 of helium at 100 kPa and 25C. The helium is then compressed during a polytropic process (Pvn = constant). The final pressure is 270 kPa and the final temperature is 150C. Determine (a) the mass of the helium (kg), (b) the final volume (m3), (c) the poly tropic exponent n, (d) the work for the compression process (kJ), and (e) the heat transfer (kJ).
A nozzle is is designed to achieve M=4 under expanded exit flow conditions. For the given...
A nozzle is is designed to achieve M=4 under expanded exit flow conditions. For the given total pressure and total temperature, calcuate: a) exit Mach b)mach at which normal shock occurs in the model
Air is supplied to a convergent–divergent nozzle from a reservoir where the pressure is 100 kPa....
Air is supplied to a convergent–divergent nozzle from a reservoir where the pressure is 100 kPa. The air is then discharged through a short pipe into another reservoir where the pressure can be varied. The cross-sectional area of the pipe is twice the area of the throat of the nozzle. Friction and heat transfer may be neglected throughout the flow. If the discharge pipe has constant cross-sectional area, determine the range of static pressure in the pipe for which a...
1- Steam enters a nozzle at 500 °C and 1000 kPa with a velocity of 15...
1- Steam enters a nozzle at 500 °C and 1000 kPa with a velocity of 15 m/s. It leaves the nozzle at 200 °C and 300 kPa while losing heat at a rate of 30 kW. For an inlet area of 700 cm2, determine the velocity of the steam at the nozzle exit.?
1. If an ideal solution of the flow field through a nozzle is shown with a...
1. If an ideal solution of the flow field through a nozzle is shown with a depiction of vectors distributed at points throughout the nozzle that illustrate the magnitude and direction of steady flow through those points, this depiction would be Eulerian or Lagrangian (circle one) 2. If an ideal solution of the flow field through a nozzle is shown with a depiction of vectors attached to particles moving through the nozzle, changing magnitude and direction as they move through...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT