Question

In: Physics

The thermal conductivity of a brass rod (property: thermal conductivity) when setting up an experiment to...

The thermal conductivity of a brass rod (property: thermal conductivity) when setting up an experiment to measure the thermal conductivity of a solid based on Fourier's Law, what hardware factors will need to be controlled? Give your reason for each one.

Solutions

Expert Solution

a) We can control the supply of the heat and hence the temperature change will be also different. But this will be such that their ratio will be invariant if the thickness and area are the same.

b) If we change the thickness of the material, the temperature difference will be different, And we can use the material with different thickness, so this factor we can control.

c) The area of the cross-section of the material is changed, then also the temperature difference will be affected. And we can control this parameter too.


Related Solutions

What is thermal conductivity and what does thermal conducivitiy necessary for what and thermal conductivity is...
What is thermal conductivity and what does thermal conducivitiy necessary for what and thermal conductivity is important for clinic but why?
A rod of diameter D = 25 mm and thermal conductivity of 60 W/m·K protrudes from...
A rod of diameter D = 25 mm and thermal conductivity of 60 W/m·K protrudes from a furnace with a wall temperature of 200ºC. The rod is welded to the furnace wall and is used as a hangar for instrumentation cables. To avoid damaging the cables, the surface temperature of last 100 mm of the rod must be kept below 100ºC. The ambient air temperature is 25ºC and the convection coefficient is 15 W/m2K. (a) Write the finite-difference equation for...
16. What is the minimum diameter of a brass rod if it is to support a...
16. What is the minimum diameter of a brass rod if it is to support a 400 N load without exceeding the elastic limit? Assume that the stress for the elastic limit is 379 MPa. 17. A body is rotating according to the equation alpha = 3t where alpha is in rad/s2 and t is in sec. when t=0, the angular velocity is 4 rad/s and angular distance is zero. Compute the angular distance (rad) after t=2 sec. Answer in...
When setting up a PCR experiment, you must prepare a positive control sample. What would the...
When setting up a PCR experiment, you must prepare a positive control sample. What would the positive control help you discover? A) You forgot to add Loading Dye to your samples B) The DNA ladder is denatured C) Your thermocycler is broken D) Your reagents are contaminated with foreign DNA
discussion and conclusion for the thermal conductivity of solids Lab for the thermodynamics course
discussion and conclusion for the thermal conductivity of solids Lab for the thermodynamics course
Suppose we have a rod of material of conductivity K = 1 and situated on the...
Suppose we have a rod of material of conductivity K = 1 and situated on the x-axis, for 0 ≤ x ≤ 1. Suppose further that the rod is laterally insulated, but has a known internal heat source f(x). The left and right ends of the rod are held at 0 ◦C (degrees Celsius). With n = 5 Solve the linear system in Jupyter using Gauss-Jordan Elimination. See the notes on the first problem of this set for hints on...
Question 2 2.1       A brass rod of 25 mm in diameter is enclosed in a steel...
Question 2 2.1       A brass rod of 25 mm in diameter is enclosed in a steel tube. The tube is 10 mm thick with an outside diameter of 50 mm. The bar and the tube are initially 1 m long and are rigidly fastened together at each end. Calculate the stresses in the two materials when the temperature is raised by 80 0C.                                2.2       If the composite bar is then subjected to an axial tensile load of 60 kN, find...
Question 2 2.1       A brass rod of 25 mm in diameter is enclosed in a steel...
Question 2 2.1       A brass rod of 25 mm in diameter is enclosed in a steel tube. The tube is 10 mm thick with an outside diameter of 50 mm. The bar and the tube are initially 1 m long and are rigidly fastened together at each end. Calculate the stresses in the two materials when the temperature is raised by 80 0C.                                2.2       If the composite bar is then subjected to an axial tensile load of 60 kN, find...
An experimental arrangement for measuring the thermal conductivity of solid materials involves the use of two...
An experimental arrangement for measuring the thermal conductivity of solid materials involves the use of two long rods that are equivalent in every respect, except that one is fabricated from a standard material of known thermal conductivity kA while the other is fabricated from the material whose thermal conductivity kB is desired. Both rods are attached at one end to a heat source of fixed temperature Tb, are exposed to a fluid of temperature T∞, and are instrumented with thermocouples...
Heat is generated uniformly at a rate of 2x105 W/m3 in a wall of thermal conductivity...
Heat is generated uniformly at a rate of 2x105 W/m3 in a wall of thermal conductivity 25W/m K and thickness 60 mm. The wall is exposed to convection on both sides, with a fluid temperature of 30C and h = 50W/m2 K on the left side, a fluid temperature of 15C and h = 12 W/m2 K on the right side. (a) Determine surface temperature on each side of the wall, and (b) the maximum temperature in the wall.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT