Question

In: Advanced Math

Suppose we have a rod of material of conductivity K = 1 and situated on the...

Suppose we have a rod of material of conductivity K = 1
and situated on the x-axis, for 0 ≤ x ≤ 1. Suppose further that the rod is
laterally insulated, but has a known internal heat source f(x). The left and
right ends of the rod are held at 0 ◦C (degrees Celsius). With n = 5
Solve the linear system in Jupyter using Gauss-Jordan Elimination. See the notes on
the first problem of this set for hints on how to use and report the results from Gauss-Jordan Elimination.
This equation can be
understood as balancing the flow of heat from a node to its neighbors:
−yi−1 + 2yi − yi+1 = h2/k f(xi)

Solutions

Expert Solution


Related Solutions

A new material has a measured thermal conductivity k of 200 BTU-in/hr-ft2 -°F. Is this material...
A new material has a measured thermal conductivity k of 200 BTU-in/hr-ft2 -°F. Is this material a thermal insulator or a conductor? Calculate the R and U values for a block of this material that is 3 inches thick. Now sandwich this block of material between two sheets of R-0.8 fiberboard. What is the new effective U value?
A cylindrical resistor with radius K and length L is made from a material with conductivity...
A cylindrical resistor with radius K and length L is made from a material with conductivity ?. The potential difference between the circular ends is V. What is the current that flows from one end to the other? What is the resistance? Show that the resistance you found is R = ?L/A, where ? is the resistivity of the material, and A is the cross-sectional area of the cylinder. (Hint: The electric field is constant throughout the resistor, but its...
The thermal conductivity of an insulating material used over a hot pipe varies as k =...
The thermal conductivity of an insulating material used over a hot pipe varies as k = 0.0545 (1 + 28.4 × 10–4 T) where T is in °C and k is in W/mK. This insulation is used for a thickness of 12 cm over a pipe of diameter 0.6 m. The pipe surface is at 300°C and the outside insulation temperature is 60°C. Determine the heat flow for a length of 5 m. Also find the mid layer temperature.
a solid material that has thermal conductivity K in kilowatts per meter-kelvin and temperature given at...
a solid material that has thermal conductivity K in kilowatts per meter-kelvin and temperature given at each point by w(x, y, z) has heat flow given by the vector field F = ?K?wand rate of heat flow across a surface S within the solid given by?K ?? ??S ?w dS. Find the rate of heat flow out of a sphere of radius 1 meter inside a large cube of copper (K=400kilowatts/m-k) with temperature function given by w(x, y, z)=20?5(x2+y2+z2)?C
The thermal conductivity of a brass rod (property: thermal conductivity) when setting up an experiment to...
The thermal conductivity of a brass rod (property: thermal conductivity) when setting up an experiment to measure the thermal conductivity of a solid based on Fourier's Law, what hardware factors will need to be controlled? Give your reason for each one.
A long cylindrical rod of 100 mm radius consists of a nuclear material (k = 0.5...
A long cylindrical rod of 100 mm radius consists of a nuclear material (k = 0.5 W/m-K) generating 24 kW/m3 uniformly throughout its volume. The rod is enclosed within a tube having an outer radius of 200 mm and a thermal conductivity of 4 W/m-K. The outer surface is exposed to a convection environment at 100 C with a convective heat transfer coefficient of 20 W/m2-k. a) Calculate the heat rate per unit length being convected away from the rod....
A long cylindrical rod of 100 mm radius consists of a nuclear material (k = 0.5...
A long cylindrical rod of 100 mm radius consists of a nuclear material (k = 0.5 W/m-K) generating 24 kW/m3 uniformly throughout its volume. The rod is enclosed within a tube having an outer radius of 200 mm and a thermal conductivity of 4 W/m-K. The outer surface is exposed to a convection environment at 100 C with a convective heat transfer coefficient of 20 W/m2-k. a) Calculate the heat rate per unit length being convected away from the rod....
We have a metal rod of length L. The rod is on the x-axis extending from...
We have a metal rod of length L. The rod is on the x-axis extending from 0 to L. We select a point X on the rod randomly and uniformly and cut the rod at X. This gives two smaller rods of lengths X and L − X. We select the longer piece (if the two pieces are of equal length we select one of them) and cut it again randomly and uniformly to get three pieces. What is the...
e are choosing material for a round rod. The material must be a metal or alloy....
e are choosing material for a round rod. The material must be a metal or alloy. The length of the rod must be close to 1 m, and its cross-sectional diameter must be between 1 mm and 3 mm. Its natural frequency of vibration, f, should be as low as possible. (a) Clearly list the constraints, objective, and free variables. (b) What is the performance index of the material? (c) What are the best 2 material candidates?
e are choosing material for a round rod. The material must be a metal or alloy....
e are choosing material for a round rod. The material must be a metal or alloy. The length of the rod must be close to 1 m, and its cross-sectional diameter must be between 1 mm and 3 mm. Its natural frequency of vibration, f, should be as low as possible. (a) Clearly list the constraints, objective, and free variables. (b) What is the performance index of the material? (c) What are the best 2 material candidates?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT