Question

In: Nursing

What is thermal conductivity and what does thermal conducivitiy necessary for what and thermal conductivity is...

What is thermal conductivity and what does thermal conducivitiy necessary for what and thermal conductivity is important for clinic but why?

Solutions

Expert Solution

Thermal conductivity can be described as the ability of any given material to transfer or conduct heat and the rate at which the heat is transferred by a mode of conduction through a given area of the material. Thermal conductivity is important inthe dissipation of the energy of a system or a building formed in the system/ building. So when the thermal conductivity of a building or its fabric is low, the lesser is the amount of energy required to maintain the inner atmosphere or environment. For a clinic thermal conductivity is important because it helps in maintaining a particular temperature inside the clinic or a hospital facility so as to make the residents or a patients stable and comfortable. Higher fluctuations in thermal conductivity can cause discomfort in the clinics patients or cause problems in temperature regulation of the building. Hence for the above mentioned reasons thermal conductivity of the clinic becomes very important for heat dissipation and temperature regulation.


Related Solutions

The thermal conductivity of a brass rod (property: thermal conductivity) when setting up an experiment to...
The thermal conductivity of a brass rod (property: thermal conductivity) when setting up an experiment to measure the thermal conductivity of a solid based on Fourier's Law, what hardware factors will need to be controlled? Give your reason for each one.
discussion and conclusion for the thermal conductivity of solids Lab for the thermodynamics course
discussion and conclusion for the thermal conductivity of solids Lab for the thermodynamics course
An experimental arrangement for measuring the thermal conductivity of solid materials involves the use of two...
An experimental arrangement for measuring the thermal conductivity of solid materials involves the use of two long rods that are equivalent in every respect, except that one is fabricated from a standard material of known thermal conductivity kA while the other is fabricated from the material whose thermal conductivity kB is desired. Both rods are attached at one end to a heat source of fixed temperature Tb, are exposed to a fluid of temperature T∞, and are instrumented with thermocouples...
Heat is generated uniformly at a rate of 2x105 W/m3 in a wall of thermal conductivity...
Heat is generated uniformly at a rate of 2x105 W/m3 in a wall of thermal conductivity 25W/m K and thickness 60 mm. The wall is exposed to convection on both sides, with a fluid temperature of 30C and h = 50W/m2 K on the left side, a fluid temperature of 15C and h = 12 W/m2 K on the right side. (a) Determine surface temperature on each side of the wall, and (b) the maximum temperature in the wall.
A spherical shell of wood with thermal conductivity of 0.13 W/m.K and an inner and outer...
A spherical shell of wood with thermal conductivity of 0.13 W/m.K and an inner and outer radius of 10 cm and 20 cm respectively contains a mixture of water and water vapor(100 C) inside the shell which is undergoing a phase change at atmospheric pressure. The shell is suspended in a large room with an ambient air temperature of 25 C Determine the temperature on the outer surface of the spherical shell and rate of heat loss from the fluid...
The thermal conductivity of an insulating material used over a hot pipe varies as k =...
The thermal conductivity of an insulating material used over a hot pipe varies as k = 0.0545 (1 + 28.4 × 10–4 T) where T is in °C and k is in W/mK. This insulation is used for a thickness of 12 cm over a pipe of diameter 0.6 m. The pipe surface is at 300°C and the outside insulation temperature is 60°C. Determine the heat flow for a length of 5 m. Also find the mid layer temperature.
3. A stainless steel sphere of thermal conductivity 16 W/m · K with a diameter of...
3. A stainless steel sphere of thermal conductivity 16 W/m · K with a diameter of 4 cm is exposed to a convective environment of 15 W/m2 · K, 20?C. Heat is generated uniformly in the sphere at a rate of 1.0 MW/m3 . Determine the steady-state temperature of the sphere at its center and its surface. Also determine the heat flux at a radius of 1.5 cm.
2.21 Use IHT to perform the following tasks. (a) Graph the thermal conductivity of pure copper,...
2.21 Use IHT to perform the following tasks. (a) Graph the thermal conductivity of pure copper, 2024 aluminum, and AISI 302 stainless steel over the temperature range 300 T 600 K. Include all data on a single graph, and comment on the trends you observe. (b) Graph the thermal conductivity of helium and air over the temperature range 300 T 800 K. Include the data on a single graph, and comment on the trends you observe. (c) Graph the kinematic...
In a slab of material 0.25 m thick and having a thermal conductivity of 45 W/mK,...
In a slab of material 0.25 m thick and having a thermal conductivity of 45 W/mK, the temperature °C at x under steady state is given by T = 100 + 200x – 400x2 when x is measured from one face in m. Determine the heat flow at x = 0, x = 0.125 and x = 0.25 m and also the temperatures and temperature gradients at these planes. If the difference in heat flow at these sections is due...
Derive/explain how thermal conductivity can be explained in terms of the kinetic theory of gases.
Derive/explain how thermal conductivity can be explained in terms of the kinetic theory of gases.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT