Question

In: Math

initial value problem y'=ty(4-y)/3, y(0)=y_0 determine the behavior of solution as t increases depends on the...

initial value problem
y'=ty(4-y)/3, y(0)=y_0
determine the behavior of solution as t increases depends on the initial value y_0
The answer says that y->-infinite when y_0<0. but i cannot understand. please explain it

Solutions

Expert Solution

Using methode of seperable variables,

Using Partial fraction, we can write,

Equating like terms,

When t=0, y(0) = y_0

When,

Let take

THIS VALUE WILL BE ALWAYS POSITIVE.

Lets take y_0= -1

This valus will be always negative .


Related Solutions

Find the solution of the given initial value problem: y′′′+y′=sec(t), y(0)=6, y′(0)=7, y′′(0)=−3
Find the solution of the given initial value problem: y′′′+y′=sec(t), y(0)=6, y′(0)=7, y′′(0)=−3
Find the solution of the given initial value problem. ty′+2y=sin(t), y(π/2)=7, t>0 Enclose arguments of functions,...
Find the solution of the given initial value problem. ty′+2y=sin(t), y(π/2)=7, t>0 Enclose arguments of functions, numerators, and denominators in parentheses. For example, sin(2x) or (a−b)/(1+n).
for y(t) function ty'' - ty' + ty = 0, y(0)= 0 , y'(0)= 1 solve...
for y(t) function ty'' - ty' + ty = 0, y(0)= 0 , y'(0)= 1 solve this initial value problem by using Laplace Transform. (The equation could have been given such as "y'' - y' + y = 0" but it is not. Please, be careful and solve this question step by step.) )
Find the solution of the initial value problem y′′−2y′−3 y=15te2t, y(0)=2, y′(0)=0.
Find the solution of the initial value problem y′′−2y′−3 y=15te2t, y(0)=2, y′(0)=0.
Solve the given initial-value problem. y'' + y = 0,    y(π/3) = 0,    y'(π/3) = 4
Solve the given initial-value problem. y'' + y = 0,    y(π/3) = 0,    y'(π/3) = 4
Find the solution of the initial-value problem. y'' + y = 3 + 5 sin(x), y(0)...
Find the solution of the initial-value problem. y'' + y = 3 + 5 sin(x), y(0) = 5, y'(0) = 8
Find the solution of the given initial value problem: y^(4)+2y′′′+y′′+8y′−12y=12sint+40e^−t y(0)=0, y′(0)=38/5,  y′′(0)=4/5,  y′′′(0)=−54/5
Find the solution of the given initial value problem: y^(4)+2y′′′+y′′+8y′−12y=12sint+40e^−t y(0)=0, y′(0)=38/5,  y′′(0)=4/5,  y′′′(0)=−54/5
if y(t) is the solution of y′′+2y′+y=δ(t−3),y(0)=0,y′(0)=0 the find y(4)
if y(t) is the solution of y′′+2y′+y=δ(t−3),y(0)=0,y′(0)=0 the find y(4)
Solve the initial value problem: Y''-4y'+4y=f(t) y(0)=-2, y'(0)=1 where f(t) { t if 0<=t<3 , t+2...
Solve the initial value problem: Y''-4y'+4y=f(t) y(0)=-2, y'(0)=1 where f(t) { t if 0<=t<3 , t+2 if t>=3 }
Solve the initial value problem y′=(2cos(2x))/(3+2y), y(0)=−1 and determine where the solution attains its maximum value...
Solve the initial value problem y′=(2cos(2x))/(3+2y), y(0)=−1 and determine where the solution attains its maximum value (for 0≤x≤1.697). Enclose arguments of functions in parentheses. For example, sin(2x). Y(x)=? x=?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT