Question

In: Math

Find the solution of the given initial value problem: y^(4)+2y′′′+y′′+8y′−12y=12sint+40e^−t y(0)=0, y′(0)=38/5,  y′′(0)=4/5,  y′′′(0)=−54/5

Find the solution of the given initial value problem:

y^(4)+2y′′′+y′′+8y′−12y=12sint+40e^−t

y(0)=0, y′(0)=38/5,  y′′(0)=4/5,  y′′′(0)=−54/5

Solutions

Expert Solution


Related Solutions

Find the solution of the given initial value problem. y(4) + 2y''' + y'' + 8y'...
Find the solution of the given initial value problem. y(4) + 2y''' + y'' + 8y' − 12y = 12 sin t − e−t;    y(0) = 7,    y'(0) = 0,    y''(0) = −1,    y'''(0) = 2
Find the solution of the given initial value problem: 2y′′′+26y′−232y=0 y(0)=7, y′(0)=38, y′′(0)=−233 Enclose arguments of...
Find the solution of the given initial value problem: 2y′′′+26y′−232y=0 y(0)=7, y′(0)=38, y′′(0)=−233 Enclose arguments of functions in parentheses. For example, sin(2x).
Find the solution of the given initial value problem. 2y''+y'-4y=0 ; y(0)=0 y'(0)=1
Find the solution of the given initial value problem. 2y''+y'-4y=0 ; y(0)=0 y'(0)=1
Find the solution of the initial value problem y′′+12y′+32y=0, y(0)=12 and y′(0)=−84.
Find the solution of the initial value problem y′′+12y′+32y=0, y(0)=12 and y′(0)=−84.
find the solution of the given initial value problem. y′′−2y′−3y=3te^2t y(0)=1 y′(0)=0
find the solution of the given initial value problem. y′′−2y′−3y=3te^2t y(0)=1 y′(0)=0
Find the solution of the initial value problem y′′−2y′−3 y=15te2t, y(0)=2, y′(0)=0.
Find the solution of the initial value problem y′′−2y′−3 y=15te2t, y(0)=2, y′(0)=0.
Find the solution of the given initial value problem. ty′+2y=sin(t), y(π/2)=7, t>0 Enclose arguments of functions,...
Find the solution of the given initial value problem. ty′+2y=sin(t), y(π/2)=7, t>0 Enclose arguments of functions, numerators, and denominators in parentheses. For example, sin(2x) or (a−b)/(1+n).
Find the first five nonzero terms in the solution of the given initial value problem. y′′+xy′+2y=0,...
Find the first five nonzero terms in the solution of the given initial value problem. y′′+xy′+2y=0, y(0)=8, y′(0)=9
Use the Laplace transform to solve the given initial-value problem. y'' - 2y'' - 8y =...
Use the Laplace transform to solve the given initial-value problem. y'' - 2y'' - 8y = 2sin2t; y(0) = 2, y'(0) = 4
Find the solution of the given initial value problem: y′′′+y′=sec(t), y(0)=6, y′(0)=7, y′′(0)=−3
Find the solution of the given initial value problem: y′′′+y′=sec(t), y(0)=6, y′(0)=7, y′′(0)=−3
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT