Question

In: Math

Solve the given initial-value problem. y'' + y = 0,    y(π/3) = 0,    y'(π/3) = 4

Solve the given initial-value problem.

y'' + y = 0,    y(π/3) = 0,    y'(π/3) = 4

Solutions

Expert Solution


Related Solutions

Solve the given initial-value problem. y'' + 4y = −1,    y(π/8) =3/4,y'(π/8) = 2 ,
Solve the given initial-value problem. y'' + 4y = −1,    y(π/8) =3/4,y'(π/8) = 2 ,
Use Laplace transform to solve the initial value problem y''+y'= π with y(0) = π, y'(0)...
Use Laplace transform to solve the initial value problem y''+y'= π with y(0) = π, y'(0) = 0.
Solve the initial value problem y’cosx = a + y where y(π/3)=a and 0 please explain...
Solve the initial value problem y’cosx = a + y where y(π/3)=a and 0 please explain how you do everything
Solve the given initial-value problem. y′′′ + 18y′′ + 81y′ = 0, y(0) = 0, y′(0)...
Solve the given initial-value problem. y′′′ + 18y′′ + 81y′ = 0, y(0) = 0, y′(0) = 1, y′′(0) = −10.
Solve the given initial value problem. y'''+2y''-13y'+10y=0 y(0)=4    y'(0)=42 y''(0)= -134 y(x)=
Solve the given initial value problem. y'''+2y''-13y'+10y=0 y(0)=4    y'(0)=42 y''(0)= -134 y(x)=
Solve the initial value problem: y'' + y = cos(x) y(0) = 2 y'(0) = -3...
Solve the initial value problem: y'' + y = cos(x) y(0) = 2 y'(0) = -3 y' being the first derivative of y(x), y'' being the second derivative, etc.
Solve the initial–value problem by using the Laplace transform. y′′ +2y′ +10y = δ(t−π), y(0) =...
Solve the initial–value problem by using the Laplace transform. y′′ +2y′ +10y = δ(t−π), y(0) = 0, y′(0) = 4
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  ...
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  =  0, y′′(0)  =  0, y′′′(0)  =  0.
(3 pts) Solve the initial value problem 25y′′−20y′+4y=0, y(5)=0, y′(5)=−e2. (3 pts) Solve the initial value...
(3 pts) Solve the initial value problem 25y′′−20y′+4y=0, y(5)=0, y′(5)=−e2. (3 pts) Solve the initial value problem y′′ − 2√2y′ + 2y = 0, y(√2) = e2, y′(√2) = 2√2e2. Consider the second order linear equation t2y′′+2ty′−2y=0, t>0. (a) (1 pt) Show that y1(t) = t−2 is a solution. (b) (3 pt) Use the variation of parameters method to obtain a second solution and a general solution.
Use the Laplace transform to solve the given initial value problem. y^(4)−256y=0; y(0)=38, y′(0)=64, y′′(0)=320, y′′′...
Use the Laplace transform to solve the given initial value problem. y^(4)−256y=0; y(0)=38, y′(0)=64, y′′(0)=320, y′′′ (0)=640
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT