Question

In: Advanced Math

if y(t) is the solution of y′′+2y′+y=δ(t−3),y(0)=0,y′(0)=0 the find y(4)

if y(t) is the solution of y′′+2y′+y=δ(t−3),y(0)=0,y′(0)=0 the find y(4)

Solutions

Expert Solution


Related Solutions

Find the solution of the initial value problem y′′−2y′−3 y=15te2t, y(0)=2, y′(0)=0.
Find the solution of the initial value problem y′′−2y′−3 y=15te2t, y(0)=2, y′(0)=0.
find a particular solution to y"-2y'+y=-12.5e^t
find a particular solution to y"-2y'+y=-12.5e^t
u(t−c) =uc(t) ={0, 0≤t<c,1, t≥c.} USE Laplace Transform to solve y′′+ 2y′+ 2y=δ(t−5)e^tcost, y(0) = 1,...
u(t−c) =uc(t) ={0, 0≤t<c,1, t≥c.} USE Laplace Transform to solve y′′+ 2y′+ 2y=δ(t−5)e^tcost, y(0) = 1, y′(0) = 2, whereδ(t)is the Dirac delta. Does the solution show a resonance?
Find the solution of the given initial value problem: y^(4)+2y′′′+y′′+8y′−12y=12sint+40e^−t y(0)=0, y′(0)=38/5,  y′′(0)=4/5,  y′′′(0)=−54/5
Find the solution of the given initial value problem: y^(4)+2y′′′+y′′+8y′−12y=12sint+40e^−t y(0)=0, y′(0)=38/5,  y′′(0)=4/5,  y′′′(0)=−54/5
Find solutions to the following ODEs: • y¨ − y˙ − 2y = t, y(0) =...
Find solutions to the following ODEs: • y¨ − y˙ − 2y = t, y(0) = 0, y˙(0) = 1 • y¨ − 2 ˙y + y = 4 sin(t), y(0) = 1, y˙(0) = 0 • y¨ = t 2 + t + 1 (find general solution only) • y¨ + 4y = t − 2 sin(2t), y(π) = 0, y˙(π) = 1
Solve the equation below for y(t): y''+2y'-3y=8u(t-3): y(0) = 0; y'(0)=0
Solve the equation below for y(t): y''+2y'-3y=8u(t-3): y(0) = 0; y'(0)=0
find the solution to the differential equation. d^2y/dt^2 - 7dy/dt=0, y(0)=4, y'(0)=7
find the solution to the differential equation. d^2y/dt^2 - 7dy/dt=0, y(0)=4, y'(0)=7
Solve the initial–value problem by using the Laplace transform. y′′ +2y′ +10y = δ(t−π), y(0) =...
Solve the initial–value problem by using the Laplace transform. y′′ +2y′ +10y = δ(t−π), y(0) = 0, y′(0) = 4
Give the Laplace transform of the solution to y"+2y'+3y=0 y(0)=-5 y'(0)=4
Give the Laplace transform of the solution to y"+2y'+3y=0 y(0)=-5 y'(0)=4
Find the solution. y'' + 2y' + 0.75y = 2cosx - 0.25sinx + 0.09x , y(0)...
Find the solution. y'' + 2y' + 0.75y = 2cosx - 0.25sinx + 0.09x , y(0) = 2.78 , y'(0) = -0.43
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT