Question

In: Physics

QUESTION 1 Two blocks are positioned on surfaces, each inclined at the same angle of 41.1...

QUESTION 1

  1. Two blocks are positioned on surfaces, each inclined at the same angle of 41.1 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 5.90 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.200. Assume static friction has been overcome and that everything can slide. What is must be the mass of the white block if both blocks are to slide to the RIGHT at a constant velocity?

QUESTION 2

  1. Two blocks are positioned on surfaces, each inclined at the same angle of 41.9 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 5.53 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.260. Assume static friction has been overcome and that everything can slide. What is must be the mass of the white block if both blocks are to slide to the LEFT at a constant velocity?

QUESTION 3

  1. Two blocks are positioned on surfaces, each inclined at the same angle of 52.8 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 2.67 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.280. Assume static friction has been overcome and that everything can slide. What is must be the mass of the white block if both blocks are to slide to the RIGHT at an acceleration of 1.5 m/s^2?

QUESTION 4

  1. Two blocks are positioned on surfaces, each inclined at the same angle of 47.7 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 4.15 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.320. Assume static friction has been overcome and that everything can slide. What is must be the mass of the white block if both blocks are to slide to the LEFT at an acceleration of 1.5 m/s^2?

Solutions

Expert Solution

I have done it by resolution of force (). for arranging all the 4 problems in one page, I have done some step skipping.

if you are satisfied with my solution, please give me feedback. your valuable feedback is very important to me. thank you.


Related Solutions

A.) Two blocks are positioned on surfaces, each inclined at the same angle of 40.6 degrees...
A.) Two blocks are positioned on surfaces, each inclined at the same angle of 40.6 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 5.91 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.450. Assume static friction has been overcome and that everything can...
Two blocks are positioned on surfaces, each inclined at the same angle of 52.5 degrees with...
Two blocks are positioned on surfaces, each inclined at the same angle of 52.5 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 5.05 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.510. Assume static friction has been overcome and that everything can slide....
Two blocks are positioned on surfaces, each inclined at the same angle 45.6 degrees with respect...
Two blocks are positioned on surfaces, each inclined at the same angle 45.6 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines, so the blocks can slide together. The mass of the black block is 4.10kg and the coefficient of kinetic friction for both blocks and inclines is μk 0.370. Assume static friction has been overcome and that everything can slide. A) What must...
Suppose that two blocks are positioned on an Atwood machine so that the block on the...
Suppose that two blocks are positioned on an Atwood machine so that the block on the right of mass m1 hangs at a lower elevation than the block on the left of mass m2. Both blocks are at rest. Based on this observation, what can you conclude? A) m1>m2 B) m1<m2 C) m1=m2 D) You cannot conclude anything with the given information.
Three blocks of mass ?1=?2=?3=1?? are stacked on a table as shown. The surfaces of the...
Three blocks of mass ?1=?2=?3=1?? are stacked on a table as shown. The surfaces of the blocks and table are coated with Teflon and all have the same small coefficient of friction, ??=??=0.01. A force of 30N is applied straight down on the top mass as shown. a) Draw a free body diagram for each mass labelling all forces. b) Which direction might the bottom mass move and why? c) What is the acceleration of the top mass?
Two ramps, each with the same shape angle, and height from the base contain two different...
Two ramps, each with the same shape angle, and height from the base contain two different objects. One ramp has a solid sphere located at the top while the other ramp has a solid cube located at the top. The mass of the sphere is equal to the mass of the cube. The objects are released from the same height. The sphere rolls without slipping, and the cube travels without friction. After leaving the ramp, which object will travel higher?...
1. A 4 kg mass is resting on a ramp inclined at an angle of 30...
1. A 4 kg mass is resting on a ramp inclined at an angle of 30 degrees with respect to the horizontal. A string is attached to the 4 kg mass and passes over a frictionless pulley and is connected to a 5 kg mass hanging over the side. If the coefficient of friction between the ramp and the 4 kg mass if 0.3 find; A) The acceleration of both masses B) The tension in the string C) Find the...
When two blocks collide, they each experience the same magnitude...(click ALL the correct responses) a- force...
When two blocks collide, they each experience the same magnitude...(click ALL the correct responses) a- force b- Impulse c- change in momentum d- change in velocity
1.The same horizontal force, of magnitude F, is applied to two different blocks, of mass m...
1.The same horizontal force, of magnitude F, is applied to two different blocks, of mass m and 3m The blocks move on a frictionless surface and both blocks begin from rest. If each block moves the same distance as the force is applied, which one of the following sentences is true? A)The lighter block acquires 9 times as much kinetic energy as the heavier block. B)The two blocks acquire the same kinetic energy. C)The heavier block acquires 3 times as...
Figure Q1 shows a double-inclined plane supporting two blocks M1 and M2 which have masses 12...
Figure Q1 shows a double-inclined plane supporting two blocks M1 and M2 which have masses 12 kg and 70 kg respectively. The system is released from rest in the position shown and the kinetic coefficient of friction between block M2 and the rough plane is ?? = 0.4. i) Compute the tension and acceleration of the blocks. ii) Using impulse-momentum method, determine the time taken when M2 reaches a speed of 2 m/s.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT