Question

In: Chemistry

The reaction glucose + ATP <=> glucose-1-phosphate + ADP has ΔG°' = -9.6 kJ mol-1. This...

The reaction glucose + ATP <=> glucose-1-phosphate + ADP has ΔG°' = -9.6 kJ mol-1. This is a coupled reaction which can be broken into two parts. The first part of the reaction is ATP + H2O <=> ADP + Pi, with ΔG°' = -30.5 kJ mol-1. The second part of the reaction is glucose + Pi <=> glucose-1-phosphate + H2O. Calculate the ΔG°' value for this reaction in kJ mol-1.

Solutions

Expert Solution

glucose + ATP <=> glucose-1-phosphate + ADP    ΔG°' = -9.6 kJ mol-1.

ATP + H2O <=> ADP + Pi,                                   ΔG°' = -30.5 kJ mol-1

(-)    (-)              (-)        (-)                                                  (+)

------------------------------------------------------------------------------------------------------

glucose + Pi <=> glucose-1-phosphate + H2O       ΔG°' = 20.9Kj/mole


Related Solutions

Given ΔG˚' for each of the following reactions: ATP->ADP + Pi ΔG˚'= -30.5 kj/mol Glucose-6-phosphate-> glucose...
Given ΔG˚' for each of the following reactions: ATP->ADP + Pi ΔG˚'= -30.5 kj/mol Glucose-6-phosphate-> glucose + Pi ΔG˚'= -13.8 kj/mol Show how you would calculate the standard free energy change (ΔG˚') for the overall reaction: ATP + glucose -> glucose-6-phosphate+ ADP Then, How do you calculate the equilibrium constant K'eq for the overall reaction that is above at 25˚C?
The reaction 1,3-bisphosphoglycerate + ADP <=> 3-phosphoglycerate + ATP has ΔG° = -18.8 kJ mol-1. Calculate...
The reaction 1,3-bisphosphoglycerate + ADP <=> 3-phosphoglycerate + ATP has ΔG° = -18.8 kJ mol-1. Calculate ΔGrxn in kJ mol-1 at 37.0 °C when [1,3-bisphosphoglycerate] = 1.90 mmol L-1, [ADP] = 1.20 mmol L-1, [3-phosphoglycerate] = 0.450 mmol L-1, and [ATP] = 4.00 mmol L-1. (R = 8.3145 J mol-1 K-1) The reaction S(aq) + T(aq) <=> U(aq) has K = 17.5. Which of the following is true when [S] = 12.0 mmol L-1, [T] = 19.0 mmol L-1, and...
1. Reaction 1 has a ΔG° of –12.3 kJ/mol, and Reaction 2 has a ΔG° of...
1. Reaction 1 has a ΔG° of –12.3 kJ/mol, and Reaction 2 has a ΔG° of 23.4 kJ/mol. Which statement is TRUE of these two reactions? Select one: A. Reaction 1 occurs faster. B. Reaction 2 occurs faster. C. Both reactions occur at the same rate. D. Reaction 2 will not occur. E. It is impossible to know which reaction occurs faster with this information. 2. Fructose-1-phosphate can be hydrolyzed into fructose + inorganic phosphate (Pi) with a ΔG° of...
Biological Thermodynamics A. Calculate the ΔG°’ for the reaction of ATP with Glucose to form Glucose-6-phosphate...
Biological Thermodynamics A. Calculate the ΔG°’ for the reaction of ATP with Glucose to form Glucose-6-phosphate and ADP. ΔG°’ = -16.7 kJ/mol B. Calculate the equilibrium constant for this reaction under standard conditions. (T = 25 °C; R = 8.314 J KA1 molA1; pH=7.0) Keq = 852.8 C. If the equilibrium concentration of ATP is 3 mM and the equilibrium concentration of glucose is 1 mM, calculate the equilibrium concentrations of both Glucose-6-phosphate and ADP. D. Repeat this calculation assuming...
What is the intracellular glucose concentration if the ΔG for the following reaction is -20.1 kJ/mol...
What is the intracellular glucose concentration if the ΔG for the following reaction is -20.1 kJ/mol at 37°C and concentrations for glucose-6-phosphate and phosphate are both 1 mM? glucose-6-phosphate --------> glucose + Pi ΔG° = -13.8 kJ/mol A) 1.9 M B) 87 M C) 1.9 mM D) 27 mM E) 87 mM The Answer is E. I just need help understanding why it is E. please show all your work. I really need to understand the entire process. Please don't...
c. For this reaction in heart muscle, ΔG°’ = +4.7 kJ/mol but ΔG = -0.6 kJ/mol....
c. For this reaction in heart muscle, ΔG°’ = +4.7 kJ/mol but ΔG = -0.6 kJ/mol. i. Explain, in words, how ΔG can be negative when ΔG°’ is positive. ii. What would be the ratio of 3PG to 2PG if the reaction were at equilibrium at 25°C? iii. What is the actual ratio of 3PG to 2PG in heart muscle (T = 37°C)?
The ΔG°' for the reaction ATP + H2O <----- ADP + Pi + H+ is -30.5...
The ΔG°' for the reaction ATP + H2O <----- ADP + Pi + H+ is -30.5 kJ mol-1. Other organophosphate species also undergo hydrolysis of the phosphate moiety via a similar reaction. ------> Consider the following reaction that is not spontaneous when the concentrations of the reactants and products are all 1 M.    ATP + Acetic acid <----- ADP + Acetyl phosphate ------> What concentration of acetic acid would be necessary to make the reaction just begin to be...
if ATP + H20 --> ADP +Pi and is -30.5 kJ/mole and removing a phosphate from...
if ATP + H20 --> ADP +Pi and is -30.5 kJ/mole and removing a phosphate from X to give X +Phosphate (with water) is -25.5 kJ/mole. what is overall change in free energy to add a P to X using ATP +56 +4.5 -56 -4.5
The ΔG°\' of the reaction is -7.050 kJ ·mol–1. Calculate the equilibrium constant for the reaction....
The ΔG°\' of the reaction is -7.050 kJ ·mol–1. Calculate the equilibrium constant for the reaction. (Assume a temperature of 25° C.What is ΔG at body temperature (37.0° C) if the concentration of A is 1.8 M and the concentration of B is 0.75 M?
Answer only. 1. In the reaction of adding a phosphate group from ATP to glucose, the...
Answer only. 1. In the reaction of adding a phosphate group from ATP to glucose, the free energy from hydrolysis of ATP is need to drive the phosphorylation of glucose. The free energy released from the coupled reaction is -4.0 kcal/mol. Which of the following statement is not correct? a) this reaction does not require any enzyme b) this reaction does not occur at a detectable rate when the temperature is at -20˚ c) The equilibrium of the reaction is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT