Question

In: Physics

1. A 4 kg mass is resting on a ramp inclined at an angle of 30...

1. A 4 kg mass is resting on a ramp inclined at an angle of 30 degrees with respect to the horizontal. A string is attached to the 4 kg mass and passes over a frictionless pulley and is connected to a 5 kg mass hanging over the side. If the coefficient of friction between the ramp and the 4 kg mass if 0.3 find; A) The acceleration of both masses B) The tension in the string C) Find the speed of both blocks after they move a distance of 2 meters.

Solutions

Expert Solution

Let's see an image of the situation, first we set the reference system with the positive directions. In the image we see the forces acting of each body then we set the equations in the x and y axis for both bodies. The the sense of the acceleration have been assumed if the result turns out to be negative the sense is opposite to the chosen but the magnitude is the same:

For the 5 kg body we have:


(1)

In the x-axis there is no motion and there are no forces. In the y-axis acts the tension and the weight, the acceleration points to the negative sense in the reference system.

For the 4 kg body:

(2)

(3)

The friction force is proportional to the normal force as follows:

Substituting in the y-axis equation.

Since the string is the same for both bodies we solve for T , (1) and (3) are equal:


(4)

We substitute (2) in (4):


The terms that depend on the acceleration are grouped in one side of the equation:


We solve for a:


Substituting values it yields:


Substituting the acceleration value in (1):



The velocity in an accelerated body can be written as:

Since the blocks are at rest at first:



Related Solutions

A 5.35-kg box is pulled up a ramp that is inclined at an angle of 33.0°...
A 5.35-kg box is pulled up a ramp that is inclined at an angle of 33.0° with respect to the horizontal, as shown below. The coefficient of kinetic friction between the box and the ramp is 0.165, and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of 2.09 m/s2, what must the tension FT in the rope be? Use g = 9.81 m/s2 for the acceleration due to...
A box of mass ?=20.5 kg is pulled up a ramp that is inclined at an...
A box of mass ?=20.5 kg is pulled up a ramp that is inclined at an angle ?=19.0∘ angle with respect to the horizontal. The coefficient of kinetic friction between the box and the ramp is ?k=0.305 , and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of ?=2.89 m/s2 , calculate the tension ?T in the rope. Use ?=9.81 m/s2 for the acceleration due to gravity.
A box of mass m=19.0 kg is pulled up a ramp that is inclined at an...
A box of mass m=19.0 kg is pulled up a ramp that is inclined at an angle θ=15.0∘ angle with respect to the horizontal. The coefficient of kinetic friction between the box and the ramp is μk=0.295 , and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of a=3.09 m/s2, calculate the tension FT in the rope. Use g=9.81 m/s2 for the acceleration due to gravity.
A 5.75-kg block is sent up a ramp inclined at an angle θ = 32.5° from...
A 5.75-kg block is sent up a ramp inclined at an angle θ = 32.5° from the horizontal. It is given an initial velocity v0 = 15.0 m/s up the ramp. Between the block and the ramp, the coefficient of kinetic friction is μk = 0.382 and the coefficient of static friction is μs = 0.687. How far up the ramp (in the direction along the ramp) does the block go before it comes to a stop? ___________m
A block of mass m = 2.1 kg slides down a 36 ° inclined ramp that...
A block of mass m = 2.1 kg slides down a 36 ° inclined ramp that has a height h = 3.1 m. At the bottom, it hits a block of mass M = 7.1 kg that is at rest on a horizontal surface. Assume a smooth transition at the bottom of the ramp. If the collision is elastic and friction can be ignored, determine the distance the mass m will travel up the ramp after the collision.
A 50 kg crate slides down a ramp that is inclined by 30 degrees from the...
A 50 kg crate slides down a ramp that is inclined by 30 degrees from the horizontal. The acceleration of the crate parallel to the surface of the ramp is 2.0m/s^2, and the length of the ramp is 10m. Determine the kinetic energy accumulated by the crate when it reaches the bottom of the ramp if it started from rest at the top of the incline. Calculate the amount of energy lost by the crate due to friction in its...
To push a crate of mass 55 kg up a frictionless ramp with an angle of...
To push a crate of mass 55 kg up a frictionless ramp with an angle of 50 ° to the horizontal, a worker exerts a force of 1050 N parallel to the incline. The crate moves a distance of 5 m What work is done on the crate by the worker? J Tries 0/2 What work is done by the weight of the crate?   J Tries 0/2 What work is done by the normal force exerted by the floor on...
A block slides down a frictionless inclined ramp. If the ramp angle is 26° and its...
A block slides down a frictionless inclined ramp. If the ramp angle is 26° and its length is 29 m, find the speed of the block as it reaches the bottom of the ramp, assuming it started sliding from rest at the top.
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle ?...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle ? = 31.2
A crate of mass 100.0 kg rests on a rough surface inclined at an angle of...
A crate of mass 100.0 kg rests on a rough surface inclined at an angle of 37.0° with the horizontal. A massless rope to which a force can be applied parallel to the surface is attached to the crate and leads to the top of the incline. In its present state, the crate is just ready to slip and start to move down the plane. The coefficient of friction is 80% of that for the static case a.    What is the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT