In: Physics
Two blocks are positioned on surfaces, each inclined at the same angle 45.6 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines, so the blocks can slide together. The mass of the black block is 4.10kg and the coefficient of kinetic friction for both blocks and inclines is μk 0.370. Assume static friction has been overcome and that everything can slide. A) What must be the mass of the white block if both blocks are to slide to the right at a constant velocity? B)What must be the mass of the white block if both blocks are to slide to the left at a constant velocity? C) What must be the mass of the white block if both blocks are to slide to the right at an acceleration of 1.5m/s^2? D) What is must be the mass of the white block if both blocks are to slide to the left at an acceleration of 1.5 m/s2? E)Now, re-do part (d) above, but now assuming no friction at all on either incline. So in the absence of friction, what must be the mass of the white block such that both blocks slide to the left at an acceleration of 1.5 m/s2?