Question

In: Chemistry

Given ΔG˚' for each of the following reactions: ATP->ADP + Pi ΔG˚'= -30.5 kj/mol Glucose-6-phosphate-> glucose...

Given ΔG˚' for each of the following reactions: ATP->ADP + Pi ΔG˚'= -30.5 kj/mol Glucose-6-phosphate-> glucose + Pi ΔG˚'= -13.8 kj/mol Show how you would calculate the standard free energy change (ΔG˚') for the overall reaction: ATP + glucose -> glucose-6-phosphate+ ADP Then, How do you calculate the equilibrium constant K'eq for the overall reaction that is above at 25˚C?

Solutions

Expert Solution

Solution :-

We need to use both equations and rearrange them so that by adding them we can get the final equation.

ATP->ADP + Pi ΔG˚'= -30.5 kj/mol                                                 eq 1

Glucose-6-phosphate ----> glucose + Pi ΔG˚'= -13.8 kj/mol           eq 2

ATP + glucose -> glucose-6-phosphate+ ADP deltaG= ?

We need to reverse the eq 2 so that we can get the glucose on the left side of the equation

Glucose + Pi ----- > Glucose-6-phosphate ΔG˚'= 13.8 kJ/mol eq 3

Now we have to add eq 1 and eq 3

ATP->ADP + Pi ΔG˚'= -30.5 kj/mol

Glucose + Pi ----- > Glucose-6-phosphate ΔG˚'= 13.8 kj/mol

-----------------------------------------------------------------------------------------------

ATP + glucose ---> glucose-6-phosphate+ ADP Delta G=(-30.5 kJ/mol)+(13.8kJ/mol)= -16.7 kJ/mol

Therefore the ΔG˚' for the overall reaction is -16.7 kJ/mol

Now lets calculate the Keq for the overall reaction

ΔG˚'= - RT ln K

T= 25 C + 273 = 298 K

R= 8.314 J/mol K

-16.7 kJ/mol * 1000 J / 1 kJ = -16700 J/mol

Lets put the values in the formula

-16700 J/mol = - 8.314 J per mol K * 298 K * ln K

-16700 J/mol / (- 8.314 J per mol K * 298 K) = ln K

6.74 = ln K

Anti ln [6.74 ] = K

e^(6.74) = K

846 = K

Therefore equilibrium constant for the overall reaction is Keq = 846


Related Solutions

The reaction glucose + ATP <=> glucose-1-phosphate + ADP has ΔG°' = -9.6 kJ mol-1. This...
The reaction glucose + ATP <=> glucose-1-phosphate + ADP has ΔG°' = -9.6 kJ mol-1. This is a coupled reaction which can be broken into two parts. The first part of the reaction is ATP + H2O <=> ADP + Pi, with ΔG°' = -30.5 kJ mol-1. The second part of the reaction is glucose + Pi <=> glucose-1-phosphate + H2O. Calculate the ΔG°' value for this reaction in kJ mol-1.
if ATP + H20 --> ADP +Pi and is -30.5 kJ/mole and removing a phosphate from...
if ATP + H20 --> ADP +Pi and is -30.5 kJ/mole and removing a phosphate from X to give X +Phosphate (with water) is -25.5 kJ/mole. what is overall change in free energy to add a P to X using ATP +56 +4.5 -56 -4.5
The ΔG°' for the reaction ATP + H2O <----- ADP + Pi + H+ is -30.5...
The ΔG°' for the reaction ATP + H2O <----- ADP + Pi + H+ is -30.5 kJ mol-1. Other organophosphate species also undergo hydrolysis of the phosphate moiety via a similar reaction. ------> Consider the following reaction that is not spontaneous when the concentrations of the reactants and products are all 1 M.    ATP + Acetic acid <----- ADP + Acetyl phosphate ------> What concentration of acetic acid would be necessary to make the reaction just begin to be...
Biological Thermodynamics A. Calculate the ΔG°’ for the reaction of ATP with Glucose to form Glucose-6-phosphate...
Biological Thermodynamics A. Calculate the ΔG°’ for the reaction of ATP with Glucose to form Glucose-6-phosphate and ADP. ΔG°’ = -16.7 kJ/mol B. Calculate the equilibrium constant for this reaction under standard conditions. (T = 25 °C; R = 8.314 J KA1 molA1; pH=7.0) Keq = 852.8 C. If the equilibrium concentration of ATP is 3 mM and the equilibrium concentration of glucose is 1 mM, calculate the equilibrium concentrations of both Glucose-6-phosphate and ADP. D. Repeat this calculation assuming...
The reaction 1,3-bisphosphoglycerate + ADP <=> 3-phosphoglycerate + ATP has ΔG° = -18.8 kJ mol-1. Calculate...
The reaction 1,3-bisphosphoglycerate + ADP <=> 3-phosphoglycerate + ATP has ΔG° = -18.8 kJ mol-1. Calculate ΔGrxn in kJ mol-1 at 37.0 °C when [1,3-bisphosphoglycerate] = 1.90 mmol L-1, [ADP] = 1.20 mmol L-1, [3-phosphoglycerate] = 0.450 mmol L-1, and [ATP] = 4.00 mmol L-1. (R = 8.3145 J mol-1 K-1) The reaction S(aq) + T(aq) <=> U(aq) has K = 17.5. Which of the following is true when [S] = 12.0 mmol L-1, [T] = 19.0 mmol L-1, and...
Given the following reaction at 298 K: ATP(aq) + H2O(l) → ADP(aq) + Pi(aq) ΔG∘rxn =...
Given the following reaction at 298 K: ATP(aq) + H2O(l) → ADP(aq) + Pi(aq) ΔG∘rxn = -30.5 kJ Part A In a particular cell, the concentrations of ATP, ADP, and Pi are 2.8×10−3 M , 1.6×10−3 M , and 5.1×10−3 M , respectively. Calculate the free energy change for the hydrolysis of ATP under these conditions. (Assume a temperature of 298 K.)
What is the intracellular glucose concentration if the ΔG for the following reaction is -20.1 kJ/mol...
What is the intracellular glucose concentration if the ΔG for the following reaction is -20.1 kJ/mol at 37°C and concentrations for glucose-6-phosphate and phosphate are both 1 mM? glucose-6-phosphate --------> glucose + Pi ΔG° = -13.8 kJ/mol A) 1.9 M B) 87 M C) 1.9 mM D) 27 mM E) 87 mM The Answer is E. I just need help understanding why it is E. please show all your work. I really need to understand the entire process. Please don't...
Given that ΔG∘ = −13.6 kJ/mol, calculate ΔG at 25∘C for the following sets of conditions....
Given that ΔG∘ = −13.6 kJ/mol, calculate ΔG at 25∘C for the following sets of conditions. 1) 30 atm NH3, 30 atm CO2, 4.0 M NH2CONH2 Express the free energy in kilojoules per mole to two significant figures. 2) 8.0×10−2 atm NH3, 8.0×10−2 atm CO2, 1.0 M NH2CONH2 Express the free energy in kilojoules per mole to two significant figures. Is the reaction spontaneous for the conditions in Part A and/or Part B? A) Is the reaction spontaneous for the...
The endergonic conversion of ADP to ATP requires more than 30 kJ/mol. The hydrolysis of phosphoenolpyruvate...
The endergonic conversion of ADP to ATP requires more than 30 kJ/mol. The hydrolysis of phosphoenolpyruvate to pyruvate drives the conversion of ADP to ATP. What must be true about this hydrolysis? 1. The hydrolysis reaction is more endergonic than the conversion of ADP is exergonic. 2. The hydrolysis reaction is less exergonic than the conversion of ADP is endergonic. 3.The hydrolysis reaction is more exergonic than the conversion of ADP is endergonic. 4.The hydrolysis reaction is more endergonic than...
The reaction is glucose with adenosine triphosphate (ATP) to form glucose 6- phosphate and adenosine diphosphate...
The reaction is glucose with adenosine triphosphate (ATP) to form glucose 6- phosphate and adenosine diphosphate (ADP). This reaction has a calculated equilibrium constant (K) of 1.90 × 105. What are the equilibrium concentrations of glucose and ATP if the initial concentrations of both are 0.100 M?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT