Question

In: Civil Engineering

Find [A]^-1 for the following equation using LU Decomposition and {x}. 3x1 - 2x2 + x3...

Find [A]^-1 for the following equation using LU Decomposition and {x}.
3x1 - 2x2 + x3 = -10
2x1 + 6x2 - 4x3 = 44
-x1 - 2x2 + 5x3 = -26

Solutions

Expert Solution


Related Solutions

Find the inverse for [A] for the following equation using LU Decomposition 8x1 + 4x2 -x3...
Find the inverse for [A] for the following equation using LU Decomposition 8x1 + 4x2 -x3 = 11 -2x1 + 5x2 + x3 = 4 2x1 - x2 + 6x3 = 7
Solve the following set of equations with LU factorization with pivoting: 3x1 -2x2 + x3 =...
Solve the following set of equations with LU factorization with pivoting: 3x1 -2x2 + x3 = -10 2x1 + 6x2- 4x3 = 44 -8x1 -2x2 + 5x3 = -26 Please show all steps
Q: (LU decomposition) Find the LU decomposition of A = [-3 2 5 1; 12 -4...
Q: (LU decomposition) Find the LU decomposition of A = [-3 2 5 1; 12 -4 -20 -2; -6 0 15 1; -9 6 35 4]. You can use the compact method which works within a single matrix or you can build L and U separately. State L and U explicitly, and verify (in Matlab) that A = L*U. Hint: Matlab's built-in lu function isn't useful, since it pivots.
4-Consider the following problem: max − 3x1 + 2x2 − x3 + x4 s.t. 2x1 −...
4-Consider the following problem: max − 3x1 + 2x2 − x3 + x4 s.t. 2x1 − 3x2 − x3 + x4 ≤ 0 − x1 + 2x2 + 2x3 − 3x4 ≤ 1 − x1 + x2 − 4x3 + x4 ≤ 8 x1, x2, x3, x4 ≥ 0 Use the Simplex method to verify that the optimal objective value is unbounded. Make use of the final tableau to construct an unbounded direction..
Consider the nonlinear equation f(x) = x3− 2x2 − x + 2 = 0. (a) Verify...
Consider the nonlinear equation f(x) = x3− 2x2 − x + 2 = 0. (a) Verify that x = 1 is a solution. (b) Convert f(x) = 0 to a fixed point equation g(x) = x where this is not the fixed point iteration implied by Newton’s method, and verify that x = 1 is a fixed point of g(x) = x. (c) Convert f(x) = 0 to the fixed point iteration implied by Newton’s method and again verify that...
Consider the TOYCO model given below: TOYCO Primal: max z=3x1+2x2+5x3 s.t. x1 + 2x2 + x3...
Consider the TOYCO model given below: TOYCO Primal: max z=3x1+2x2+5x3 s.t. x1 + 2x2 + x3 ? 430 (Operation 1) 3x1 + 2x3 ? 460 (Operation 2) x1 + 4x2 ? 420 (Opeartion 3 ) x1, x2, x3 ?0 Optimal tableau is given below: basic x1 x2 x3 x4 x5 x6 solution z 4 0 0 1 2 0 1350 x2 -1/4 1 0 1/2 -1/4 0 100 x3 3/2 0 1 0 1/2 0 230 x6 2 0 0...
Let f(x) = x3 − 2x2. Find the point(s) on the graph of f where the...
Let f(x) = x3 − 2x2. Find the point(s) on the graph of f where the tangent line is horizontal. (x, y) = 0 (smaller x-value) (x, y) = (larger x-value) B) A straight line perpendicular to and passing through the point of tangency of the tangent line is called the normal to the curve. Find an equation of the tangent line and the normal to the curve y = x3 - 3x + 1 at the point (3, 19)....
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1...
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1 +2X2 ≤6 X1 -X2 +2X3 =8 X1 ≥0,X2 ≥0,X3 urs
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 +...
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 + 6x2 + 2x3 = 0 3x1 + 3x2 + 7x3 = 4 i. Use the Gauss-Jacobi iterative technique with x (0) = 0 to find approximate solution to the system above up to the third step ii. Use the Gauss-Seidel iterative technique with x (0) = 0 to find approximate solution to the third step
Find the set of ALL optimal solutions to the following LP: min z= 3x1−2x2 subject to...
Find the set of ALL optimal solutions to the following LP: min z= 3x1−2x2 subject to 3x1+x2≤12 3x1−2x2−x3= 12 x1≥2 x1, x2, x3≥0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT