Question

In: Chemistry

An electron absorbs a photon of wavelength 2.6*10^(-5)m. If the electron has a ground (original) state...

An electron absorbs a photon of wavelength 2.6*10^(-5)m. If the electron has a ground (original) state (level) of n=3, to which level is the electron promoted?

Solutions

Expert Solution

From Rydburg's Equation , 1/ λ = R[(1/ni2) – (1/nf2)]
   Where R = Rydburg's constant = 10.96 x106 m-1
               λ = wavelength = 2.6X10-5 m
               ni = 3
               nf = ?
Plug the values we get [(1/ni2) – (1/nf2)] = 1 / (Rλ )

= 3.51x10-3

  [(1/32) – (1/nf2)] = 3.51x10-3

  (1/nf2) = 0.1076

nf2 = 9.3

nf = 3.05   

So this wavelength is not enough to promote the electron to higher energy level


Related Solutions

An electron at ground state, absorbs the energy of a photon that has a frequency of...
An electron at ground state, absorbs the energy of a photon that has a frequency of 3.1573 x 1015/s, and jumps to the higher level. The same electron makes two more consecutive jumps. First, the electron jumps to another energy level by emitting a photon with a wavelength of 434.1 nm. This electron jumps immediately to the third energy level. Find the energy and the frequency of the photon which are the result of the third jump
a hydrogen atom in the ground state absorbs a photon of light with a wavelength of...
a hydrogen atom in the ground state absorbs a photon of light with a wavelength of 97.3nm causing the electron to jump to an unknown energy level. the electron then relaxes emitting a photon of light in the visible range, what is the wavelength of the emitted photon?
A hydrogen electron in the ground state absorbs a 92.3157 nm photon to reach a higher...
A hydrogen electron in the ground state absorbs a 92.3157 nm photon to reach a higher excited state (a), and then emits two photons, one with 1.75777 x 10^-20 J of energy to reach an intermediate state (b), and one with wavelength 1005.22nm as it falls back to a lower excited state (c). Determine the three energy levels (a,b,c) of this particular electron.
A ground state hydrogen atom absorbs a photon of light having a wavelength of 93.03 nm....
A ground state hydrogen atom absorbs a photon of light having a wavelength of 93.03 nm. It then gives off a photon having a wavelength of 93 nm. What is the final state of the hydrogen atom? nf= ?
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a...
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a transition to the n=3 state. Then it returns to the ground state by emitting two photons when going to n=2 and then n=1 states. A. What are the wavelengths of these photons? B. What will be the wavelength if only one photon is emitted? C. What is the maximum number of electrons with ml=3 in the shell with n=5? D. How many electrons with...
what is the wavelength of the longest wavelength photon that a Ground state hydrogen atom can...
what is the wavelength of the longest wavelength photon that a Ground state hydrogen atom can absorb?
An electron in a Hydrogen atom originally at n=5 energy level absorbs a photon with a...
An electron in a Hydrogen atom originally at n=5 energy level absorbs a photon with a frequency of 6.54×10^13 and then proceeds to emit another photon with a frequency of 2.98×10^14. To what energy level does the electron move?
An electron in the hydrogen atom falls from the 2p to 1s state and a photon is emitted. What is the wavelength of the emitted photon (in nm)?
  An electron in the hydrogen atom falls from the 2p to 1s state and a photon is emitted. What is the wavelength of the emitted photon (in nm)? Select one: a. 20 b. 91 c. 122 d. 364 e. 138
An X-ray photon with a wavelength of 0.979 nm strikes a surface. The emitted electron has...
An X-ray photon with a wavelength of 0.979 nm strikes a surface. The emitted electron has a kinetic energy of 984 eV. What is the binding energy of the electron in kJ/mol? [Note that KE = 12mv2 and 1 electron volt (eV) = 1.602×10−19J.]
A hydrogen atom is in the ground state. It absorbs energy and makes a transition to...
A hydrogen atom is in the ground state. It absorbs energy and makes a transition to the n = 5 excited state. The atom returns to the ground state by emitting two photons, one in dropping to n = 4 state, and one in further dropping to the ground state. What are the photon wavelengths of (a) the first and (b) the second transitions?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT