In: Math
The plane x+y+z= 24 intersects the cone x2+y2= z2 in an ellipse. The goal of this exercise is to find the two points on this ellipse that are closest to and furthest away from the xy-plane. Thus, we want to optimize F(x,y,z)= z, subject to the two constraints G(x,y,z)= x+y+z= 24 and H(x,y,z)= x2+y2-z2= 0.