Using the function f(x)=ln(1+x)
a. Find the 8 degree taylor polynomial centered at 0 and
simplify.
b. using your 8th degree taylor polynomial and taylors
inequality, find the magnitude of the maximum possible error on
[0,0.1]
c.approximate ln(1.1) using your 8th degree taylor polynomial.
what is the actual error? is it smaller than your estimated
error?Round answer to enough decimal places so you can
determine.
d. create a plot of the function f(x)=ln(1+x) along with your
taylor polynomial. Based on...
(a) Determine the Taylor Series centered at a = 1 for the
function f(x) = ln x.
(b) Determine the interval of convergence for this Taylor
Series.
(c) Determine the number n of terms required to estimate the
value of ln(2) to within Epsilon = 0.0001.
Can you please help me solve it step by step.
1. If f(x) = ln(x/4)
-(a) Compute Taylor series for f at c = 4
-(b) Use Taylor series truncated after n-th term to compute f(8/3)
for n = 1,.....5
-(c) Compare the values from above with the values of f(8/3) and
plot the errors as a function of n
-(d) Show that Taylor series for f(x) = ln(x/4) at c = 4 represents
the function f for x element [4,5]
consider f(x) = ln(x)
a) Approximate f(0.9) and f(1.1)
b) Use Taylor remainder to find an error formula for Taylor
polynomial.
Give error bounds for each of the two approximations in (a).
Which of the two approximations in part (a) is closer to correct
value?
c) Compare an actual error in each case with error bound in part
(b).
consider f(x) = ln(x)
a) Approximate f(0.9) and f(1.1)
b) Use Taylor remainder to find an error formula for Taylor
polynomial.
Give error bounds for each of the two approximations in (a).
Which of the two approximations in part (a) is closer to correct
value?
c) Compare an actual error in each case with error bound in part
(b).
Find the Taylor series or polynomial generated by the following
functions
a. )f(x) √ x centred at x=4 , of order 3
b.) f(x) cosh x= e^x+e^-x/(2), centred at x=0
c.) f(x) = x tan^-1x^2 , centred at x=0
d.) f(x) = 1/(√1+x^3) , centred at x=0 , of order 4
e.) f(x) = cos(2x+pie/2) centred at x= pie/4