Using the function f(x)=ln(1+x)
a. Find the 8 degree taylor polynomial centered at 0 and
simplify.
b. using your 8th degree taylor polynomial and taylors
inequality, find the magnitude of the maximum possible error on
[0,0.1]
c.approximate ln(1.1) using your 8th degree taylor polynomial.
what is the actual error? is it smaller than your estimated
error?Round answer to enough decimal places so you can
determine.
d. create a plot of the function f(x)=ln(1+x) along with your
taylor polynomial. Based on...
Find the Taylor polynomial of degree 2 centered at a = 1 for the
function f(x) = e^(2x) . Use Taylor’s Inequality to estimate the
accuracy of the approximation e^(2x) ≈ T2(x) when 0.7 ≤
x ≤ 1.3
(a) Determine the Taylor Series centered at a = 1 for the
function f(x) = ln x.
(b) Determine the interval of convergence for this Taylor
Series.
(c) Determine the number n of terms required to estimate the
value of ln(2) to within Epsilon = 0.0001.
Can you please help me solve it step by step.
Let f(x) = 1 + x − x2 +ex-1.
(a) Find the second Taylor polynomial T2(x) for f(x)
based at b = 1.
b) Find (and justify) an error bound for |f(x) − T2(x)| on the
interval
[0.9, 1.1]. The f(x) - T2(x) is absolute value.
Please answer both questions cause it will be hard to post them
separately.