Question

In: Math

Find the Taylor series or polynomial generated by the following functions a. )f(x) √ x centred...

Find the Taylor series or polynomial generated by the following functions

a. )f(x) √ x centred at x=4 , of order 3

b.) f(x) cosh x= e^x+e^-x/(2), centred at x=0

c.) f(x) = x tan^-1x^2 , centred at x=0

d.) f(x) = 1/(√1+x^3) , centred at x=0 , of order 4

e.) f(x) = cos(2x+pie/2) centred at x= pie/4

Solutions

Expert Solution


Related Solutions

Find the Taylor series for f ( x ) centered at the given value of a...
Find the Taylor series for f ( x ) centered at the given value of a . (Assume that f has a power series expansion. Do not show that R n ( x ) → 0 . f ( x ) = 2 /x , a = − 4
Find the Taylor polynomial of degree 2 centered at a = 1 for the function f(x)...
Find the Taylor polynomial of degree 2 centered at a = 1 for the function f(x) = e^(2x) . Use Taylor’s Inequality to estimate the accuracy of the approximation e^(2x) ≈ T2(x) when 0.7 ≤ x ≤ 1.3
Find the Taylor series for f (x) = 2/(1+3x) at x = a where a =...
Find the Taylor series for f (x) = 2/(1+3x) at x = a where a = 0
Find the Taylor series of f(x)=ln(3+2x) about x=0.
Find the Taylor series of f(x)=ln(3+2x) about x=0.
Find the second-degree Taylor polynomial of f(x)=ln(1+sinx) centered at x=0.
Find the second-degree Taylor polynomial of f(x)=ln(1+sinx) centered at x=0.
find the n-th order Taylor polynomial and the remainder for f(x)=ln(1+x) at 0
find the n-th order Taylor polynomial and the remainder for f(x)=ln(1+x) at 0
Let f(x) = 1 + x − x2 +ex-1. (a) Find the second Taylor polynomial T2(x)...
Let f(x) = 1 + x − x2 +ex-1. (a) Find the second Taylor polynomial T2(x) for f(x) based at b = 1. b) Find (and justify) an error bound for |f(x) − T2(x)| on the interval [0.9, 1.1]. The f(x) - T2(x) is absolute value. Please answer both questions cause it will be hard to post them separately.
f(x) = x ln x (a) Write the Taylor polynomial T3(x) for f(x) at center a...
f(x) = x ln x (a) Write the Taylor polynomial T3(x) for f(x) at center a = 1. (b) Use Taylor’s inequality to give an upper bound for |R3| = |f(x) − T3(x)| for |x − 1| ≤ 0.1. You don’t need to simplify the number.
Find the degree 4 Taylor polynomial of f (x) = sin(2x) centered at π/6
Find the degree 4 Taylor polynomial of f (x) = sin(2x) centered at π/6
find the taylor polynomial T5 of f(x) = e^x sinx with the center c=0 hint: e^x...
find the taylor polynomial T5 of f(x) = e^x sinx with the center c=0 hint: e^x = 1 + x + x^2/2! + x^3/3! + ..., sinx=x - x^3/3! + x^5/5! -...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT