Question

In: Mechanical Engineering

Show step by step the answer and write clearly Consider a steam power plant operating on...

Show step by step the answer and write clearly

Consider a steam power plant operating on the ideal reheat Rankine cycle.

The steam enters the high-pressure stage turbine at 15 MPa and 600 oC and

the condenser pressure is 10 kPa. If the intermediate pressure is 4 MPa

and the steam enters the low-pressure stage turbine at 600 oC, determine

the following:

(a) Enthalpy at the end of each process

(b) Heat added

(c) Heat rejected

(d) Work of pump and turbines

(e) Thermal efficiency of this cycle.

Solutions

Expert Solution


Related Solutions

Consider a steam power plant operating on a simple ideal Rankine cycle in which the steam...
Consider a steam power plant operating on a simple ideal Rankine cycle in which the steam enters the turbine at 3 MPa and 350C and is condensed in the condenser at 75 kPa. Determine the thermal efficiency of this cycle and sketch an appropriately labeled T-s diagram. Also compare this thermal efficiency to that a Carnot heat engine operating between these same two limits. The change in enthalpy across the pump = work done by the pump: h2-h1= v1(P2– P1)
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 600°C. The steam condenses in the condenser at 10 kPa. Use the EES software to study the effects of the following cases on the cycle performance and to sketch the T-s diagram for each case: Plot the variation of the cycle thermal efficiency with the turbine isentropic efficiency. Take the isentropic efficiency of the turbine in the range 70% to...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 600°C. The steam condenses in the condenser at 10 kPa. Use the EES software to study the effects of the following cases on the cycle performance and to sketch the T-s diagram for each case: #Plot the variation of the cycle thermal efficiency with the turbine isentropic efficiency. Take the isentropic efficiency of the turbine in the range 70% to...
Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure...
Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at PH MPa and TH °C and is condensed in the condenser at a pressure of PL kPa. Assume the steam is reheated to the inlet temperature of the high-pressure turbine, and that pump work is NOT negligible. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed w% percent, determine: (a) the pressure at...
Ideal Reheat Steam Cycle (10) Consider a steam power plant operating on the ideal reheat Rankine...
Ideal Reheat Steam Cycle (10) Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at PH MPa and TH °C and is condensed in the condenser at a pressure of PL kPa. Assume the steam is reheated to the inlet temperature of the high-pressure turbine, and that pump work is NOT negligible. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed w% percent,...
Consider a steam power plant operating on a simple ideal Rankine cycle and having a net...
Consider a steam power plant operating on a simple ideal Rankine cycle and having a net power output of 57 MW. The steam enters the turbine at 9 MPa and 575 ° C and exits at 150 ° C, then it is cooled in the condenser to a pressure of 100 kPa by means of the cooling water from a lake and that circulates through the condenser tubes to a rate of 1370 kg / s. Consider leaving the pump...
Consider a coal-fired steam power plant that produces 175 MW of electric power. The power plant...
Consider a coal-fired steam power plant that produces 175 MW of electric power. The power plant operates on a simple ideal Rankine cycle with turbine inlet conditions of 7 MPa and 550°C and a condenser pressure of 15 kPa. The coal has a heating value (energy released when the fuel is burned) of 29,300 kJ/kg. Assuming that 75% of this energy is transferred to the steam in the boiler and that the pump has an efficiency of 80% and the...
The net power of a steam power plant operating according to the simple ideal Rankine cycle...
The net power of a steam power plant operating according to the simple ideal Rankine cycle is 30.5 MW. Water vapor enters the turbine at 7 MPa pressure and 500 ° C, expands to 10 kPa condenser pressure in the turbine. The steam is condensed in the condenser by cooling it with water from a lake. The flow rate of the lake water is 1950 kg / h. Get the pump and turbine adiabatic efficiency of 87%. Show the cycle...
a.) What is the thermal efficiency of a steam power plant operating on the Rankine cycle...
a.) What is the thermal efficiency of a steam power plant operating on the Rankine cycle if saturated steam is supplied to the turbine at 1000 psia, and the condenser is at 1 psia. Use a turbine efficiency of 95% and a pump efficiency of 85%. Refer to Chapter 9, Sections 10-11, as necessary. b.) Determine the thermal efficiency if the steam is superheated to 1000 F, assuming all else equal.
Please show that answer step by step and explain clearly, thx!!!! 5. Does the accuracy of...
Please show that answer step by step and explain clearly, thx!!!! 5. Does the accuracy of a kNN classifier using the Euclidean distance change if you (a) translate the data (b) scale the data (i.e., multiply the all the points by a constant), or (c) rotate the data? Explain. Answer the same for a kNN classifier using Manhattan distance.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT