In: Statistics and Probability
Vacancy rates (%)
Region |
Northeast |
South |
West |
1 |
7 |
5 |
8 |
2 |
6 |
9 |
10 |
3 |
9 |
11 |
8 |
4 |
7 |
8 |
8 |
sample mean |
7.3 |
8.3 |
8.5 |
sample variance |
1.2 |
4.7 |
0.8 |
The hypothesis being tested is:
H0: Mean vacancy rate is the same for these regions
Ha: Mean vacancy rate is not the same for these regions
The output is:
SUMMARY | Count | Sum | Average | Variance | ||
Row 1 | 3 | 20 | 6.666667 | 2.333333 | ||
Row 2 | 3 | 25 | 8.333333 | 4.333333 | ||
Row 3 | 3 | 28 | 9.333333 | 2.333333 | ||
Row 4 | 3 | 23 | 7.666667 | 0.333333 | ||
Column 1 | 4 | 29 | 7.25 | 1.583333 | ||
Column 2 | 4 | 33 | 8.25 | 6.25 | ||
Column 3 | 4 | 34 | 8.5 | 1 | ||
ANOVA | ||||||
Source of Variation | SS | df | MS | F | P-value | F crit |
Rows | 11.33333 | 3 | 3.777778 | 1.494505 | 0.308436 | 4.757063 |
Columns | 3.5 | 2 | 1.75 | 0.692308 | 0.536377 | 5.143253 |
Error | 15.16667 | 6 | 2.527778 | |||
Total | 30 | 11 |
Since the p-value (0.536377) is greater than the significance level (0.10), we cannot reject the null hypothesis.
Therefore, we cannot conclude that there are any differences among the regions regarding vacancy rates.
Since the p-value (0.536377) is greater than the significance level (0.10), we cannot reject the null hypothesis.
Therefore, we can conclude that the mean vacancy rate is the same for these regions.