Question

In: Mechanical Engineering

Saturated liquid water at 1 MPa enters a D = 5 cm pipe at a rate...

Saturated liquid water at 1 MPa enters a D = 5 cm pipe at a rate of m(dot) = 2 kg/s. Heat is transferred to the water at a rate of Q(dot) = 5000 kW. The exit is at 1 MPa pressure.

(a) Neglecting kinetic energy, calculate the temperature at the pipe exit. (ans = 400◦C)

(b) Using your answer in a), calculate the exit velocity of the water. (ans = 312 m/s)

(c) Based upon your answer, should kinetic energy be included in your analysis? (ans = probably)

(d) Including the exit kinetic energy, recalculate the exit temperature. Iterate this procedure a couple of times. (ans = 378◦C)

Solutions

Expert Solution


Related Solutions

Steam enters a horizontal 15-cm-diameter pipe as a saturated vapor at 5 bar with a velocity...
Steam enters a horizontal 15-cm-diameter pipe as a saturated vapor at 5 bar with a velocity of 10 m/s and exits at 4.5 bar with a quality of 95%. Heat transfer from the pipe to the surroundings at 300K takes place at an average outer surface temperature of 400 K. For operation at steady state, determine (a) the velocity at the exit, in m/s. (b) the rate of heat transfer from the pipe, in kW. (c) the rate of entropy...
a- Water enters a house through a pipe with inside diameter of 3.0 cm at an...
a- Water enters a house through a pipe with inside diameter of 3.0 cm at an absolute pressure of 5.0 X 105 Pa. A 1.5 cm diameter pipe leads to the second-floor bathroom 6.0 m above. When the flow speed at the inlet pipe is 2.0 m/s find: - Flow speed (velocity) of the water in the bathroom - Pressure water in the bathroom? - Calculate the volume flow rate in the bathroom.
In a non-ideal Rankine cycle saturated vapor (x=1) enters the turbine at 8.0 MPa and saturated...
In a non-ideal Rankine cycle saturated vapor (x=1) enters the turbine at 8.0 MPa and saturated liquid water (x=0) exits the condenser at a pressure of Pexit. Pexit = 0.006 MPa. The net power output of the cycle is given as 100 MW. Knowing that the isentropic efficiency of the pump is 0.85 generate the following plots in Excel or in similar programs for the given range of the isentropic efficiency of the turbine. (Please submit your Excel sheet or...
A mass of 5 kg of saturated liquid vapor mixture of water is contained in a...
A mass of 5 kg of saturated liquid vapor mixture of water is contained in a piston cylinder device at 100 kPa, initially 2 kg of water is in the liquid phase and the rest is in the vapor phase.Heat is now transferred to the water and the piston which is resting on a set of stops, starts moving when the pressure in side reaches 200 kPa, heat transfer continues until the total volume increases by 20%, determine a. the...
120 kilograms of saturated water at 2.32 MPa pressure is heated to saturated vapor at same...
120 kilograms of saturated water at 2.32 MPa pressure is heated to saturated vapor at same pressure. Determine heat required for the process.
Water at 0.15 MPa if the water is 0.25% between liquid and vapor what is the...
Water at 0.15 MPa if the water is 0.25% between liquid and vapor what is the specific volume, Energy, Enthalpy and Entropy?
Water vapor at 5 MPa, 320°C enters a turbine operating at steady state and expands to...
Water vapor at 5 MPa, 320°C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow rate is 2.52 kg/s, and the isentropic turbine efficiency is 92%. Stray heat transfer and kinetic and potential energy effects are negligible. Determine the power developed by the turbine, in kW.
Consider steam in an ideal Rankine cycle. The saturated vapor enters the turbine at 8.0 MPa.
 Consider steam in an ideal Rankine cycle. The saturated vapor enters the turbine at 8.0 MPa. Saturated liquid exits the condenser at P = 0.008 MPa. The net power output of the cycle is 100 MW. determine the thermal efficiency of the cycle
A mixture of saturated liquid water and saturated steam at T = 120 °C has a...
A mixture of saturated liquid water and saturated steam at T = 120 °C has a specific enthalpy of 2000 kJ⁄kg. What is the quality of this mixture? if you could show how to do it, that'd be great.
A 1.0-cm-diameter pipe widens to 2.0 cm, then narrows to 0.5 cm. Liquid flows through the...
A 1.0-cm-diameter pipe widens to 2.0 cm, then narrows to 0.5 cm. Liquid flows through the first segment at a speed of 9.0 m/s . What is the speed in the second segment? What is the speed in the third segment? What is the volume flow rate through the pipe? for the love of god please give me the right answer. everyone has given me the wrong answers so far and i'm pissed off.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT