Question

In: Mechanical Engineering

In a non-ideal Rankine cycle saturated vapor (x=1) enters the turbine at 8.0 MPa and saturated...

In a non-ideal Rankine cycle saturated vapor (x=1) enters the turbine at 8.0 MPa and saturated liquid water (x=0) exits the condenser at a pressure of Pexit. Pexit = 0.006 MPa. The net power output of the cycle is given as 100 MW. Knowing that the isentropic efficiency of the pump is 0.85 generate the following plots in Excel or in similar programs for the given range of the isentropic efficiency of the turbine. (Please submit your Excel sheet or your computer program with the homework.)

a) Isentropic efficiency of the turbine 0.7 < ?T < 0.9 vs. steam mass flow rate

b) Isentropic efficiency of the turbine 0.7 < ?T < 0.9 vs. Rate of heat transfer from the boiler to the compressed water at the outlet of the pump

c) Isentropic efficiency of the turbine 0.7 < ?T < 0.9 vs. thermal efficiency of the cycle

Solutions

Expert Solution


Related Solutions

Consider steam in an ideal Rankine cycle. The saturated vapor enters the turbine at 8.0 MPa.
 Consider steam in an ideal Rankine cycle. The saturated vapor enters the turbine at 8.0 MPa. Saturated liquid exits the condenser at P = 0.008 MPa. The net power output of the cycle is 100 MW. determine the thermal efficiency of the cycle
Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at...
Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa. The mass flow rate of steam entering the turbine is 50 kg/s. Determine: (a) the net power developed, in kW. (b) the rate of heat transfer to the steam passing through the boiler, in kW. (c) the percent thermal efficiency. (d) the mass flow rate of condenser cooling water, in kg/s, if the cooling water...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C a) Calculate the total heat addition, net work of the cycle, heat extraction through condenser, and thermal efficiency of this ideal Rankine cycle with reheat. [25] b) Calculate the same quantities assuming that the pump and each turbine...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C a) For a pressure of 7 bar right after the first stage turbine in the ideal Rankine cycle, create two plots: thermal efficiency as a function of the reheat temperature from 200 °C to 500 °C; and the...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C. Calculate the total heat addition, net work of the cycle, heat extraction through condenser, and thermal efficiency of this ideal Rankine cycle with reheat  
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine at 4 MPa and 500 C and leaves it at 50 kPa and 150 C. the water leaves the condenser as a saturated liquid and is subsequently displaced to the boiler by means of a pump at a temperature of 85 C, which is the isentrophic efficiency of the turbine?
An ideal Rankine cycle with regenerative system. Steam enters the turbine at 6000 kPa and 450oC...
An ideal Rankine cycle with regenerative system. Steam enters the turbine at 6000 kPa and 450oC and is condensed in the condenser at 20 kPa. It the steam is extracted from the turbine at 400 kPa to heat the feedwater in an open feedwater heater and the water leaves the feedwater heater as a saturated liquid. Find the rate of heat added in the boiler? Find the rate of heat rejected in the condenser? Determine the network output per kilogram...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 600°C. The steam condenses in the condenser at 10 kPa. Use the EES software to study the effects of the following cases on the cycle performance and to sketch the T-s diagram for each case: Plot the variation of the cycle thermal efficiency with the turbine isentropic efficiency. Take the isentropic efficiency of the turbine in the range 70% to...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 600°C. The steam condenses in the condenser at 10 kPa. Use the EES software to study the effects of the following cases on the cycle performance and to sketch the T-s diagram for each case: #Plot the variation of the cycle thermal efficiency with the turbine isentropic efficiency. Take the isentropic efficiency of the turbine in the range 70% to...
An ideal Rankine cycle operates with a turbine inlet pressure of 600 psia and a turbine...
An ideal Rankine cycle operates with a turbine inlet pressure of 600 psia and a turbine inlet temperature of 526 oF. The steam is isentropically expanded through the turbine to 15 psia as illustrated on the T-s diagram shown below. Using the Mollier diagram, determine the enthalpy at the turbine inlet, in BTU/lbm, under these operating conditions. State your answer in whole numbers.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT