Question

In: Advanced Math

QUESTION 1 Vector Space Axioms Let V be a set on which two operations, called vector...

QUESTION 1

Vector Space Axioms

Let V be a set on which two operations, called vector addition and vector scalar multiplication, have been defined. If u and v are in V , the sum of u and v is denoted by u + v , and if k is a scalar, the scalar multiple of u is denoted by ku . If the following axioms satisfied for all u , v and w in V and for all scalars k and l , then V is called a vector space and its elements are called vectors.

1) u + v is in V

2) u + v = v + u

3) (u + v) + w = u + (v + w)

4) 0 + v = v

5) v + (−v) = 0

6) ku is in V

7) k(u + v) = ku + kv

8) (k + l)u = ku + lu

9) k(lu) = (kl)(u)

10) 1v = v

Task: Show that the set V of all 3×3 matrices with distinct entries and also combination of positive and negative numbers is a vector space if vector addition is defined to be matrix addition and vector scalar multiplication is defined to be matrix scalar multiplication.

QUESTION 2

Suppose u, v, and w are all vectors in a vector space V and c is any scalar. An inner product on the vector space V is a function that associates with each pair of vectors in V, say u and v, a real number denoted by u, v that satisfies the following axioms.

(a) < u, v > = < v, u > (Symmetry axiom)

(b) < u + v, w > = < u, w + v, w > (Additive axiom)

(c) < cu, v > = < c u, v > (Homogeneity axiom)

(d) < u, u > ≥ 0 and < u, u > = 0 if and only if u = 0 (Positivity axiom)

A vector space along with an inner product is called an inner product space.

Task: Show that the set V of all 3×3 matrices with distinct entries and also combination of positive and negative numbers is a inner product space if vector addition is defined to be standard matrix addition and vector scalar multiplication is defined to be matrix scalar multiplication.

Solutions

Expert Solution


Related Solutions

(1) Suppose that V is a vector space and that S = {u,v} is a set...
(1) Suppose that V is a vector space and that S = {u,v} is a set of two vectors in V. Let w=u+v, let x=u+2v, and letT ={w,x} (so thatT is another set of two vectors in V ). (a) Show that if S is linearly independent in V then T is also independent. (Hint: suppose that there is a linear combination of elements of T that is equal to 0. Then ....). (b) Show that if S generates V...
Let V be a finite dimensional vector space over R. If S is a set of...
Let V be a finite dimensional vector space over R. If S is a set of elements in V such that Span(S) = V , what is the relationship between S and the basis of V ?
Let V be a vector space and let U and W be subspaces of V ....
Let V be a vector space and let U and W be subspaces of V . Show that the sum U + W = {u + w : u ∈ U and w ∈ W} is a subspace of V .
Verify all axioms that show that the set of second degree polynomials is a vector space....
Verify all axioms that show that the set of second degree polynomials is a vector space. What is the Rank? P2 = {p(x)P | p(x) = ax^2 + bx + c where a,b,c E R}
6. Let V be the vector space above. Consider the maps T : V → V...
6. Let V be the vector space above. Consider the maps T : V → V And S : V → V defined by T(a1,a2,a3,...) = (a2,a3,a4,...) and S(a1,a2,a3,...) = (0,a1,a2,...). (a) [optional] Show that T and S are linear. (b) Show that T is surjective but not injective. (c) Show that S is injective but not surjective. (d) Show that V = im(T) + ker(T) but im(T) ∩ ker(T) ̸= {0}. (e) Show that im(S) ∩ ker(S) = {0}...
Let V be a vector space of dimension 1 over a field k and choose a...
Let V be a vector space of dimension 1 over a field k and choose a fixed nonzero element voe V, which is therefore a basis. Let W be any vector space over k and let woe W be an arbitrary vector. Show that there is a unique linear transformation T: V → W such that T(v)= wo. [Hint: What must T(Avo) be?)
Let V be the vector space of 2 × 2 real matrices and let P2 be...
Let V be the vector space of 2 × 2 real matrices and let P2 be the vector space of polynomials of degree less than or equal to 2. Write down a linear transformation T : V ? P2 with rank 2. You do not need to prove that the function you write down is a linear transformation, but you may want to check this yourself. You do, however, need to prove that your transformation has rank 2.
Proof: Let S ⊆ V be a subset of a vector space V over F. We...
Proof: Let S ⊆ V be a subset of a vector space V over F. We have that S is linearly dependent if and only if there exist vectors v1, v2, . . . , vn ∈ S such that vi is a linear combination of v1, v2, . . . , vi−1, vi+1, . . . , vn for some 1 ≤ i ≤ n.
(10pt) Let V and W be a vector space over R. Show that V × W...
(10pt) Let V and W be a vector space over R. Show that V × W together with (v0,w0)+(v1,w1)=(v0 +v1,w0 +w1) for v0,v1 ∈V, w0,w1 ∈W and λ·(v,w)=(λ·v,λ·w) for λ∈R, v∈V, w∈W is a vector space over R. (5pt)LetV beavectorspaceoverR,λ,μ∈R,andu,v∈V. Provethat (λ+μ)(u+v) = ((λu+λv)+μu)+μv. (In your proof, carefully refer which axioms of a vector space you use for every equality. Use brackets and refer to Axiom 2 if and when you change them.)
Let U and V be vector spaces, and let L(V,U) be the set of all linear...
Let U and V be vector spaces, and let L(V,U) be the set of all linear transformations from V to U. Let T_1 and T_2 be in L(V,U),v be in V, and x a real number. Define vector addition in L(V,U) by (T_1+T_2)(v)=T_1(v)+T_2(v) , and define scalar multiplication of linear maps as (xT)(v)=xT(v). Show that under these operations, L(V,U) is a vector space.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT