Question

In: Math

Proof: Let S ⊆ V be a subset of a vector space V over F. We...

Proof:

Let S ⊆ V be a subset of a vector space V over F. We have that S is linearly dependent if and only if there exist vectors v1, v2, . . . , vn ∈ S such that vi is a linear combination of v1, v2, . . . , vi−1, vi+1, . . . , vn for some 1 ≤ i ≤ n.

Solutions

Expert Solution

Let us first assume that there are vectors v1, v2, . . . , vn ∈ S such that some vi ,1 ≤ i ≤ n, is a linear combination of v1, v2, .,vi-1,vi+1, . . , vn, then there exist scalars a1,a2,…,an(not all zero if vi ≠0 ), such that vi = a1v1+a2v2+…+ai-1vi-1 +ai+1vi+1 + ,…+anvn . Then a1v1+a2v2+…+ai-1vi-1 +ai+1vi+1 + ,…+anvn –vi = 0. This means that a linear combination of v1, v2, . . . , vn equals zero without the scalar coefficients of these vectors being all zero. Hence, by the definition of linear dependence, the vectors v1, v2, . . . , vn ∈ S are linearly dependent. Therefore, the set S is also linearly dependent.

Now, let us assume that S is a linearly dependent set. This implies that there are vectors v1, v2, . . . , vn ∈ S such that a linear combination of v1, v2, . . . , vn, say a1v1+a2v2+…+anvn = 0, without the scalar coefficients of these vectors being all zero. Further, if ai≠ 0, then vi = (1/ai)( a1v1+a2v2+…+ai-1vi-1 +ai+1vi+1 + ,…+anvn).Thus, vi is a linear combination of v1, v2, .,vi-1,vi+1, . . , vn.


Related Solutions

Let S be a subset of a vector space V . Show that span(S) = span(span(S))....
Let S be a subset of a vector space V . Show that span(S) = span(span(S)). Show that span(S) is the unique smallest linear subspace of V containing S as a subset, and that it is the intersection of all subspaces of V that contain S as a subset.
(3) Let V be a vector space over a field F. Suppose that a ? F,...
(3) Let V be a vector space over a field F. Suppose that a ? F, v ? V and av = 0. Prove that a = 0 or v = 0. (4) Prove that for any field F, F is a vector space over F. (5) Prove that the set V = {a0 + a1x + a2x 2 + a3x 3 | a0, a1, a2, a3 ? R} of polynomials of degree ? 3 is a vector space over...
Let U be a subset of a vector space V. Show that spanU is the intersection...
Let U be a subset of a vector space V. Show that spanU is the intersection of all the subspaces of V that contain U. What does this say if U=∅? Need proof
If V is a linear space and S is a proper subset of V, and we...
If V is a linear space and S is a proper subset of V, and we define a relation on V via v1 ~ v2 iff v1 - v2 are in S, a subspace of V. We are given ~ is an equivalence relation, show that the set of equivalence classes, V/S, is a vector space as well, where the typical element of V/S is v + s, where v is any element of V.
Let V be a finite dimensional vector space over R. If S is a set of...
Let V be a finite dimensional vector space over R. If S is a set of elements in V such that Span(S) = V , what is the relationship between S and the basis of V ?
If {v1, v2, v3, v4} is a linearly-independent subset of a vector space V over the...
If {v1, v2, v3, v4} is a linearly-independent subset of a vector space V over the field Q, is the set {3v1 + 2v2 + v3 + v4, 2v1 + 5v2, 3v3 + 2v4, 3v1 + 4v2 + 2v3 + 3v4} linearly independent as well?
(10pt) Let V and W be a vector space over R. Show that V × W...
(10pt) Let V and W be a vector space over R. Show that V × W together with (v0,w0)+(v1,w1)=(v0 +v1,w0 +w1) for v0,v1 ∈V, w0,w1 ∈W and λ·(v,w)=(λ·v,λ·w) for λ∈R, v∈V, w∈W is a vector space over R. (5pt)LetV beavectorspaceoverR,λ,μ∈R,andu,v∈V. Provethat (λ+μ)(u+v) = ((λu+λv)+μu)+μv. (In your proof, carefully refer which axioms of a vector space you use for every equality. Use brackets and refer to Axiom 2 if and when you change them.)
Let V be the vector space of all functions f : R → R. Consider the...
Let V be the vector space of all functions f : R → R. Consider the subspace W spanned by {sin(x), cos(x), e^x , e^−x}. The function T : W → W given by taking the derivative is a linear transformation a) B = {sin(x), cos(x), e^x , e^−x} is a basis for W. Find the matrix for T relative to B. b)Find all the eigenvalues of the matrix you found in the previous part and describe their eigenvectors. (One...
Let V be a vector space and let U and W be subspaces of V ....
Let V be a vector space and let U and W be subspaces of V . Show that the sum U + W = {u + w : u ∈ U and w ∈ W} is a subspace of V .
Let V be a finite-dimensional vector space over C and T in L(V). Prove that the...
Let V be a finite-dimensional vector space over C and T in L(V). Prove that the set of zeros of the minimal polynomial of T is exactly the same as the set of the eigenvalues of T.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT