Question

In: Statistics and Probability

Data: sample   volume 1 15.5 2 16.6 3 15.5 4 16.1 5 14.4 A bottling company...

Data:

sample   volume
1 15.5
2 16.6
3 15.5
4 16.1
5 14.4

A bottling company claims that the mean amount of fluid in its beverage bottles is 16 oz. It's known that the amount of fluid is normally distributed. The amount of fluid of a sample of 9 nine bottles is shown above:

a) Test the company's claim at a .05 level of significance What is the value of the statistic?

b) Calculate a 94% Lower Confidence bound (1-sided)  for the mean amount of fluid.

c)  What minimum sample size is needed to detect a shift equal to 1 standard deviation, if the required power is .99 and the level of significance is .01

Assume we want a two-sided test.

Solve using R studio, must include code


6   15.7
7   15.4
8   14.5
9   15.5

Solutions

Expert Solution

----------------------R code--------------

vol=c(15.5,16.6,15.5,16.1,14.4,15.7,15.4,14.5,15.5)
n=9
test=t.test(vol,mu=16)
test
ci94=t.test(vol,mu=16,conf.level = 0.94)
ci94
alpha=0.01
#Shift of size 1 sd, so denominator = 1
min_sample_size=((qt(1-0.5*alpha,n-1))^2)*var(vol)
min_sample_size
-------------------------------------OUTPUT

vol=c(15.5,16.6,15.5,16.1,14.4,15.7,15.4,14.5,15.5)
> n=9
> test=t.test(vol,mu=16)
> test

   One Sample t-test

data: vol
t = -2.3154, df = 8, p-value = 0.04927
alternative hypothesis: true mean is not equal to 16
95 percent confidence interval:
14.93551 15.99783
sample estimates:
mean of x
15.46667

> ci94=t.test(vol,mu=16,conf.level = 0.94)
> ci94

   One Sample t-test

data: vol
t = -2.3154, df = 8, p-value = 0.04927
alternative hypothesis: true mean is not equal to 16
94 percent confidence interval:
14.96242 15.97091
sample estimates:
mean of x
15.46667

> alpha=0.01
> #Shift of size 1 sd, so denominator = 1
> min_sample_size=((qt(1-0.5*alpha,n-1))^2)*var(vol)
> min_sample_size
[1] 5.375993

------------------------------------

a) From the t test at 5% level, p value obatined is 0.04927 which is less than 0.05, hence we reject the claim that mean amount of claim in beverage bottle is 16 oz

b) 94% CI for mean amount of fluid is (14.96242, 15.97091)

c) minimum sample size needed is 5.37 and hence 6


Related Solutions

Obs Dividend Price 1 16.1 64.66 2 3.36 22.01 3 13.28 54.41 4 0.77 35.86 5...
Obs Dividend Price 1 16.1 64.66 2 3.36 22.01 3 13.28 54.41 4 0.77 35.86 5 8.46 36.12 6 10.54 64.95 7 6.33 40.85 8 7.96 41.65 9 8.95 43.44 10 11.54 74.9 11 8.03 51.99 12 7.97 59.51 13 10.43 58.3 14 12.6 57.4 15 9.53 57.06 16 7.62 36.16 17 11.11 53.73 18 10.22 51.1 19 9.61 49.08 20 20.15 66.43 21 7.99 43.57 22 13.76 64.74 23 17.56 80 24 17.65 77.91 25 0.46 31.39 26 14.3...
Raysut Cement Company: Strengths: 1- 2- 3- 4- 5- Weaknesses : 1- 2- 3- 4- 5-...
Raysut Cement Company: Strengths: 1- 2- 3- 4- 5- Weaknesses : 1- 2- 3- 4- 5- Opportunities : 1- 2- 3- 4- 5- Threats: 1- 2- 3- 4- 5-
2. Consider the following data: x= 1, 2, 3, 4, 5 y =3, 2, 4, 6,...
2. Consider the following data: x= 1, 2, 3, 4, 5 y =3, 2, 4, 6, 5 By hand, not using Matlab, and showing your work: (a) Compute the correlation coefficient. (b) Find the least-squares line. (c) Find the standard deviation around the least-squares line.
Sample 1 Drink Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Time of day...
Sample 1 Drink Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Time of day 2.10pm 2.40pm 3.10pm 3.40pm 4.10pm 4.40pm Time interval (min) 76 30 30 30 30 30 Urination duration (s) 5 5 6 7 6 5 Urine volume (ml) 72 35 95 156 135 76 Urine flow rate (ml/sec) 14.4 7.0 15.8 22.3 22.5 15.2 Urine Production rate (ml/min) Na+ conc’n (mmol/litre) 120 43 12 11 16 17 Na+ excretion rate (mmol/min) Urine osmolality (mOsm/kg H2O)...
Hour Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample...
Hour Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 1 98.2706 98.82376 101.8175 100.1819 102.9594 101.165 95.25957 98.97423 2 100.7166 101.8866 98.56813 98.77126 101.8273 98.20298 101.6975 99.63706 3 98.9922 101.9845 103.7859 97.94211 100.9618 102.5191 97.33631 101.6476 4 103.2479 97.55057 105.5942 99.39358 99.57922 95.39694 96.26237 102.5666 5 100.403 99.99954 100.1254 100.21 93.46717 103.2011 100.1247 101.0385 6 97.26687 101.0598 96.30829 100.2402 98.07447 97.92167 102.4083 104.0686 7 101.2243 98.17466 99.66765 101.106 100.2891 99.37136 99.33442 95.24574...
Hour Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample...
Hour Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 1 98.2706 98.82376 101.8175 100.1819 102.9594 101.165 95.25957 98.97423 2 100.7166 101.8866 98.56813 98.77126 101.8273 98.20298 101.6975 99.63706 3 98.9922 101.9845 103.7859 97.94211 100.9618 102.5191 97.33631 101.6476 4 103.2479 97.55057 105.5942 99.39358 99.57922 95.39694 96.26237 102.5666 5 100.403 99.99954 100.1254 100.21 93.46717 103.2011 100.1247 101.0385 6 97.26687 101.0598 96.30829 100.2402 98.07447 97.92167 102.4083 104.0686 7 101.2243 98.17466 99.66765 101.106 100.2891 99.37136 99.33442 95.24574...
From this Sample No A.   B.      1. 7.   4.      2. 8.   5.      3....
From this Sample No A.   B.      1. 7.   4.      2. 8.   5.      3. 9.   3.      4. 5.   6.      5. 7.   2.      6. 6.   4.   Test of hypothesis for difference of two means by using 1. t Test 2. ANOVA Take 5% type 1 error, then compare the results. Show that t² is equal to f.
4. (a) Suppose that τσ=(1 5 2 3)(4) and στ=(1 2 4 5)(3) in S5. If...
4. (a) Suppose that τσ=(1 5 2 3)(4) and στ=(1 2 4 5)(3) in S5. If σ1 = 2, find σ and τ. (b) In Sn, show that σ = τ if and only if σ(τ)^(−1) = ε. ε is the identity permutation. Must be written as a proof. (c) Let σ=(1 2 3) and τ=(1 2) in S3. Show that S3={ε,σ,σ^2,τ,τσ,τ(σ)^2} and that σ^3=ε=τ^2 and στ=τ(σ)^2, then fill out the multiplication table for S3.
Consider the data. xi 1 2 3 4 5 yi 4 7 5 11 15 The...
Consider the data. xi 1 2 3 4 5 yi 4 7 5 11 15 The estimated regression equation for these data is  ŷ = 0.60 + 2.60x. (a)Compute SSE, SST, and SSR using equations SSE = Σ(yi − ŷi)2, SST = Σ(yi − y)2, and SSR = Σ(ŷi − y)2. SSE=SST=SSR= (b) Compute the coefficient of determination r2. r2 = Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it is at least...
Consider the data. xi 1 2 3 4 5 yi 4 7 5 11 13 (a)...
Consider the data. xi 1 2 3 4 5 yi 4 7 5 11 13 (a) Compute the mean square error using equation  s2 = MSE = SSE n − 2  . (Round your answer to two decimal places.) (b) Compute the standard error of the estimate using equation s = MSE = SSE n − 2  . (Round your answer to three decimal places.) (c) Compute the estimated standard deviation of b1 using equation sb1 = s Σ(xi − x)2...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT