Question

In: Advanced Math

y''+4y=uπ(t)−u3π(t) ; y(0)=0,y'(0)=0 a.Sketch the graph of the forcing function on an appropriate interval. b.Find the...

y''+4y=uπ(t)−u(t) ; y(0)=0,y'(0)=0

a.Sketch the graph of the forcing function on an appropriate interval.

b.Find the solution of the given initial value problem.

c.Plot the graph of the solution.

d.Explain how the graphs of the forcing function and the solution are related.

Solutions

Expert Solution


Related Solutions

Solve the following differential equation: y''+4y'+4y=u(t-1)-u(t-3), y(0)=0, y'(0)=0
Solve the following differential equation: y''+4y'+4y=u(t-1)-u(t-3), y(0)=0, y'(0)=0
Solve the initial value problem: Y''-4y'+4y=f(t) y(0)=-2, y'(0)=1 where f(t) { t if 0<=t<3 , t+2...
Solve the initial value problem: Y''-4y'+4y=f(t) y(0)=-2, y'(0)=1 where f(t) { t if 0<=t<3 , t+2 if t>=3 }
solve the following initial value problem y''+4y'=g(t),y(0)=0,y' (0)=1 if g(t) is the function which is 1...
solve the following initial value problem y''+4y'=g(t),y(0)=0,y' (0)=1 if g(t) is the function which is 1 on [0,1) and zero elsewhere
1. The differential equation y''+4y=f(t) and y'(0)=y(0)=0 a. Find the transfer function and impulse response. b....
1. The differential equation y''+4y=f(t) and y'(0)=y(0)=0 a. Find the transfer function and impulse response. b. If f(t)=u(t)-u(t-1). Find the y(t) by convolution and Laplace techniques. u(t) is unit step function. c. If f(t)= cos(t) ; find the y(t) by convolution and Laplace techniques. 2. The differential equation y''+3y'+2y=e^(-3t) and y'(0)=y(0)=0 a. Find the system transfer function and impulse response. b. Find the y(t) by convolution and Laplace techniques. 3. y''+3y'+2y=f(t) and y'(0)=y(0)=0 Plot y(t) without any calculations and write...
Solve with Laplace transform 1. y''+ 4 t y'− 4y = 0, y(0) = 0, y'(0)...
Solve with Laplace transform 1. y''+ 4 t y'− 4y = 0, y(0) = 0, y'(0) = −7 2. (1− t) y''+ t y' − y = 0, y(0) = 3, y'(0) = −1
Find y as a function of x if y''''−4y'''+4y''=−128e^{-2x} y(0)=2,  y′(0)=9,  y″(0)=−4,  y‴(0)=16. y(x)=?
Find y as a function of x if y''''−4y'''+4y''=−128e^{-2x} y(0)=2,  y′(0)=9,  y″(0)=−4,  y‴(0)=16. y(x)=?
Question : y'''+4y' =0 , y'''-2y''+4y'-8y=0 , y'''-3y''+3y'-y=0 , y^4 -4y'''+6y''-4y+y=0 , y^4+6y''+9y=0 , y^6+y'''=0
Question : y'''+4y' =0 , y'''-2y''+4y'-8y=0 , y'''-3y''+3y'-y=0 , y^4 -4y'''+6y''-4y+y=0 , y^4+6y''+9y=0 , y^6+y'''=0
Find the green's function then find the solution y"+4y=x y(0)=0, y'(1)=0
Find the green's function then find the solution y"+4y=x y(0)=0, y'(1)=0
Find the green's function and fine the solution y"+4y=x y(0)=0, y'(1)=0
Find the green's function and fine the solution y"+4y=x y(0)=0, y'(1)=0
Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0)...
Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0) = 0. Solve without the Laplace Transform, first, and then with the Laplace Transform.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT