Question

In: Mechanical Engineering

air at 110 kpa and 25 degrees C enters a diffuser with diameter of 10 cm...

air at 110 kpa and 25 degrees C enters a diffuser with diameter of 10 cm and 25 cm at entrance and exit. if the velocity of air at the entrance is 15 m/s and leaving the diffuser at 1.5 m/s. determine a.) mass rate of air b.) density of air at the exit

Solutions

Expert Solution


Related Solutions

1. Air enters a steady-state diffuser at T1 = 20 °C, P1 = 100 kPa and...
1. Air enters a steady-state diffuser at T1 = 20 °C, P1 = 100 kPa and leaves at P2 = 105 kPa. You may assume an adiabatic diffuser and constant specific heats. Find T2 if: a) V1 = 10 m/s, V2 = 0 m/s b) V1 = 100 m/s, V2 = 90 m/s c) V1 = 500 m/s, V2 = 490 m/s d) V1 = 1000 m/s, V2 = 990 m/s
Air enters the diffuser of a turbojet engine at 18 kPa, 216 K, with a volumetric...
Air enters the diffuser of a turbojet engine at 18 kPa, 216 K, with a volumetric flow rate of 230 m3/s and a velocity of 265 m/s. The compressor pressure ratio is 15, and its isentropic efficiency is 87%. Air enters the turbine at 1560 K and the same pressure as at the exit of the compressor. The turbine isentropic efficiency is 89%, and the nozzle isentropic efficiency is 97%. The pressure at the nozzle exit is 18 kPa. Use...
Air enters a constant diameter pipe at a pressure of 200 kPa. At the exit of...
Air enters a constant diameter pipe at a pressure of 200 kPa. At the exit of the pipe the pressure is 120 kPa, the Mach number is 0.75, and the stagnation temperature is 330°C. Determine the inlet Mach number and the heat transfer per unit mass of air.
Air enters the compressor of a gas-turbine plant at ambient conditions of 100 kPa and 25°C...
Air enters the compressor of a gas-turbine plant at ambient conditions of 100 kPa and 25°C with a low velocity and exits at 1 MPa and 347°C with a velocity of 90 m/s. The compressor is cooled at a rate of 1500 kJ/min, and the power input to the compressor is 235 kW. Determine the mass flow rate of air through the compressor. The inlet and exit enthalpies of air are 298.2 kJ/kg and 628.07 kJ/kg. The mass flow rate...
Methane gas enters a horizontal pipe with a thin wall of 25 cm diameter at a...
Methane gas enters a horizontal pipe with a thin wall of 25 cm diameter at a temperature of 309 C with 4.5 tons of mass flow per hour and exits at 289 C. The pipe is smooth and its length is 10 m and the ambient and environmental temperature is 25 C. Since the smear coefficient of the pipe surface is given as 0.8; a-) Indoor and outdoor convection coefficients (W / m2K), b-) Heat loss from the pipe to...
Air enters a 30-cm-diameter cooling section at 1 atm, 35 C, and 60 percent relative humidity...
Air enters a 30-cm-diameter cooling section at 1 atm, 35 C, and 60 percent relative humidity at 120 m/min. The air is cooled by passing it over a cooling coil through which cold water flows. The water experiences a temperature rise of 8 C. The air leaves the cooling section saturated at 20 C. (a) Determine the rate of heat transfer. Round your answer to the nearest tenth.      Qout = _____ kJ/min (b) Determine the mass flow rate of...
Air at 60oC and 1 atm enters a smooth tube having a diameter of 2 cm...
Air at 60oC and 1 atm enters a smooth tube having a diameter of 2 cm and length of 10 cm. The air velocity is 40 m/s: 1- What constant heat flux must be applied at the tube surface to result in an air temperature rise of 5oC? 2- What average wall temperature would be necessary for this case? Answer: (1) qs = 11841W/m2    (2) Tw = 97oC
Air enters the compressor of an ideal gas refrigeration cycle at 17°C and 35 kPa and...
Air enters the compressor of an ideal gas refrigeration cycle at 17°C and 35 kPa and the turbine at 47°C and 160 kPa. The mass flow rate of air through the cycle is 0.3 kg/s. Assume variable specific heats for air. Determine the net power input. The net power input is kW.
3) Air enters a compressor at 2 m / s, 20 ° C and 100 kPa...
3) Air enters a compressor at 2 m / s, 20 ° C and 100 kPa pressure, exits at 50 m / s, 900 kPa pressure and 200 ° C. Make sure that the power consumed by the compressor is 500 kW. The outlet cross-section diameter of the compressor is 10 cm. (Neglect the change in potential energy.) (15 points) CALCULATE THE AMOUNT OF HEAT?
Water vapor enters a subsonic diffuser at 0.5 bar, 175 °C, and 200 m/s. The diffuser...
Water vapor enters a subsonic diffuser at 0.5 bar, 175 °C, and 200 m/s. The diffuser inlet is 100 cm2. During passage through the diffuser, the fluid velocity is reduced to 50 m/s, pressure increases to 1.0 bar and heat transfer to the surroundings is 0.5 kg/kJ. Determine a) the final temperature, b) the mass flow rate [kg/s] and c) the outlet area [cm2]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT